Angela Mincemoyer Structural Option Advisor: Dr. Boothby Peggy Ryan Williams Center Ithaca, New York 20 November 2013

Peggy Ryan Williams Center

Technical Report 4

Angela Mincemoyer Structural Option November 20, 2013

Dr. Boothby Advisor Penn State University

Dear Dr. Boothby,

The following Technical Report 4 was prepared for AE 481W. The purpose of the report was to determine if the building's lateral system is adequate for the wind and seismic loads according to industry standard serviceability and strength considerations. In order to answer this question, a 3D structural computer model was constructed using ETABS. Once the model was verified, it was used to determine the member forces and drifts of various wind and earthquake load cases. The results were then interpreted to determine if the lateral system was in fact adequate.

The contents of this report include the wind and seismic loads that were input into ETABS, a 3D view of the ETABS model, member forces determined from the model, determination of worst load case, determination of the controlling load combination, and strength and serviceability checks of the braced frames. Various calculations performed in excel detail all of the necessary calculations. It is important to note that the following calculations are based on the gravity, wind, and seismic loads which may be seen in the appendices.

Thank you in advance for taking the time to review the following report.

Sincerely,

Angela Mincemoyer

Enclosed: Technical Report 4

Table of Contents

Building Abstract
Executive Summary4
Site Plan and Location Plan5
List of Documents Used in Preparation of this Report
Brief Overview of the Lateral System7
Computer Modeling Process
Verifying the Model10
Determination of Loads13
Wind Load Cases13
Seismic Load Cases21
Distribute Lateral Forces to Beams22
Determination of Worst Case Wind/Seismic26
Determination of Controlling Load Combination
Check Frame Member Strengths35
Check Drift
Impact on Foundation
Conclusion41
Appendix A – First Floor Framing Plan42
Appendix B – Gravity Loads43
Appendix C – Wind Loads55
Appendix D – Seismic Loads

PRIMARY PROJECT TEAM:

Owner | Ithaca College Architect | Holt Architects Structural Engineer | Ryan-Biggs Associates Mechanical & Electrical Engineer | Delta Engineers General Contractor | Christa Construction

ARCHITECTURE:

- Various aspects were driven by desire to be ecofriendly
- · Large areas of glass provide views of Cayuga Lake
- Façade consists of zinc panels, blue stone veneer, composite aluminum panels, and limestone panels
- Pedestrian bridge connects PRWC to adjacent building

STRUCTURE:

- Foundation
 - Slab-on-grade, foundation walls, footings, various grade beams, piers and drilled piers
- Framing System
 - All floors are composed of composite steel decking
 - Steel framing consists of wide flange beams, girders, and columns
- Lateral System
 - Concentrically braced structural steel frames in both the North-South and East-West directions

GENERAL BUILDING DATA:

Building Occupant | Ithaca College Occupancy | Office Use Size | 58,200 gross square feet Stories | 4 stories above grade Substantial Completion | March 2010 Cost of Construction | approx. \$19.3 million Project Delivery Method | Design-Bid-Build

SUSTAINABILITY:

- Awarded LEED Platinum
- "V" shaped roof aids in rain water collection
- · Day lighting made possible by large areas of glass
- Intensive Green Roof
- Atrium promotes natural ventilation

MEP:

- Mechanical
 - Main heating and cooling source is geothermal via a closed loop system adjacent to the building
 - Two dedicated outdoor air units (DOA) will utilize water to water heat pumps
- Electrical
 - Primary Service: 12.5 KV primary fused switches, 500 KVA transformer, 480/277 Volt Distribution Switchboard
 - Secondary Distribution: 150 KVA, 480V to 120/208 Volt transformer and (1) 120/208 Volt Main power panel
- Plumbing
 - · Collect and store rainwater for gray water use
 - (3) rainwater collections tanks

ANGELA MINCEMOYER

STRUCTURAL

http://www.engr.psu.edu/ae/thesis/portfolios/2014/ahm5066/index.html

Executive Summary

The Peggy Ryan Williams Center, formerly known as "The Gateway Building," is a four story office building located on the Ithaca College campus, Ithaca, New York. The building was originally known as "The Gateway Building" because the college saw the building as a gateway to the campus. At the time, the college was moving into a new era of sustainability and they wanted to show their prospective students, employees, and visitors the strides that they were making towards their goal.

Sustainability and a desire to connect with nature were both driving forces for the building's architectural features. The large areas of glass, offering vistas to Cayuga Lake, allow the occupants to feel like they are part of the nature around them. Other eco-friendly architectural features include the "V" shaped roof which aids in rainwater collection, and the large atrium which extends through the building to promote natural ventilation.

The structural system components are fairly common; however, their placement and size variations make the framing very irregular. The roof of the building is constructed of roof decking, which spans perpendicular to the beams, girders, and columns. The floor of Level 1 through Level 3 consists of composite decking and wide flanged beams, girders, and columns. Various beams and girders are provided with shear studs for composite action. Sizes and spans of the wide flanges vary greatly throughout the building and even throughout a single floor framing system. At locations where the building cantilevers, moment connections and larger beam/girder sizes make the cantilevers possible.

Columns, piers, and drilled piers support the foundation for the PRWC. The drilled piers range from resting on top of bedrock, to being drilled down 4'-0" below competent bedrock, depending on their location and loading.

Another distinctive feature of the Peggy Ryan Williams Center is the pedestrian bridge, which connects the building to the adjacent Dillingham Center. The bridge is a box truss supported in a double cantilever configuration with a 2" expansion joint on either end. I am eager to explore ways to improve the existing design for the bridge.

Due to its location, the PRWC was designed following the 2002 Building Code of New York State (BCNYS) which adopted the 2000 International Building Code (IBC). In addition to the BCNYS, additional loading and design requirements from American Society of Civil Engineering (ASCE) 7-98 are incorporated by reference into the IBC. In addition, various other codes were used in the design and are discussed in further detail in the following report.

Site Plan and Location Plan

Photo provided courtesy of Holt Architects

Documents Used in Preparation of this Report

- Building Code of New York State
 - 2002 BCNYS (IBC 2000 adopted)
- International Building Code
 - IBC 2009
- American Society of Civil Engineers
 - ASCE 7-98: Minimum Design Loads for Buildings and Other Structures
- Vulcraft Deck Catalog
- American Concrete Institute
 - ACI 318-11
- American Institute of Steel Construction
 - AISC 14th edition
- American Wood Council
 - National Design Specification (NDS): Design Values for Wood Construction
- Boise Cascade
 - Engineered Wood Products: Boise Glulam Beam and Column Specifier Guide
- Reed Construction Data
 - RS Means: Square Foot Cost 2013
 - RS Means: Facilities, Maintenance, and Repair 2013
- UC Berkley's Industrial Engineering and Operations Research Center
- EFCO Corporation's Catalog
- Common Wealth Curb Appeal Bluestone Guide

Brief Overview of the Lateral System

The lateral system of the Peggy Ryan Williams Center consists primarily of concentrically braced structural steel frames. The north-south direction consists of various frames located throughout the building footprint. However, the east-west direction has fewer effective frames. The lack of effective east-west frames will allow more torsion to exist throughout the building. On the ground level of the building, a foundation wall is introduced which resists the soil loads. This foundation wall aids in the wind and seismic lateral loads as well. This causes some of the braced frames to carry more loads on story 2 than on story 1. Locations of the braced frames and foundation walls may be viewed below in Figure 1.

FOUNDATION WALL BRACED FRAMES

> Figure 1: First Floor Framing Plan Showing Locations of Braced Frames and Foundation Walls Drawing S101

Computer Modeling Process

Due to my familiarity with ETABS, from the AE 530 Computer Modeling class, I decided to model the building in ETABS. However, as may be seen in Figure 1 above, the framing of the Peggy Ryan Williams Center has irregular geometries. Therefore, the layout lent itself to first be drawn in AutoCAD and then exported to ETABS. I began by drawing the grid and slabs in AutoCAD. I then exported these files into ETABS and converted them to ETABS grids and slabs, respectively. Upon completing the layout, I added the various braced frames to the entire building, as well as the foundation walls. While modeling, I made the decision to use the worst case roof height, which is conservative. I also assumed that the foundation walls would crack, per ACI 318. I modeled all of the columns of the braced frames to have a pinned base condition. I modeled these as pinned because a typical column detail illustrates the pinned connection which allows no moment transfer to the pier below. I modeled the foundation walls to have a fixed base because they are supported by 6'-0" wide footings. I then assigned a rigid diaphragm to each slab of the building. Once I had the elements modeled, I began to verify my model.

At this point, I ran into numerous problems with the model. First, I noticed that the joints on the braced frames were deflecting up and down. To begin troubleshooting, I made sure that all of the beams were fixed-fixed and that all of the braces were pinned-pinned. I then redrew many braces and beams to see if that would restrain the joints. None of these solutions seemed to fix the problem. I then removed the mass from all of the materials of the model. This appeared to fix the problem of the moving joints. It was decided that the materials of the model could not be modeled with mass since the model was only intended to be a lateral model, not a gravity model. Since the problem appeared to be fixed, I continued to verify the model by adding a 1000 kip test load to the model. Upon running the load, I noticed that neither the displacements nor the center of rigidity made sense. The displacements were much higher than expected. This led me to believe that the diaphragms and frames were not interacting. The center of rigidity was far away from the expected location. I attempted to fix the issue by removing the openings in the floors and temporarily removing the foundation walls to see if the center of rigidity would move and be more reasonable. However, neither of these solutions solved the problems.

At this point, it was determined that I needed to restart my model in ETABS. I learned that I needed to start simple and work my way up to a more complicated model. I started by simply modeling one frame at a time (on the west end of the building) and seeing how it reacted to a 100 kip test load. Once I verified that the model appeared to be behaving properly I would add another frame. Because the building changes geometry, I chose to only start by modeling the west end of the building, the orthogonal portion of the building. Once I had the west end of the building completed, I decided that I needed to move forward with the modeling process and further verify the model. Therefore, my model only consists of the west end of the building.

Since my ETABS model appeared to be behaving properly at this point in time, I began to hypothesize why my original model did not work. Two conclusions were drawn. First, by drafting both the grid and the floor slabs in AutoCAD and then importing into ETABS, the slabs were not snapped to the grid. Therefore, when I assigned the diaphragm to the slab and drew the frames (which snapped to the grid) the frames and diaphragms were not interacting. Second, the order in which the elements were drawn/assigned was not the correct order. It was hypothesized that in order to have the diaphragm interact with the frames, it not only had to be snapped to the grid, but also drawn/assigned after the frames were in place. Because I had drawn the slab before my frames in my original model, this was most likely also a source of error. Therefore, when I modeled the west end of the building, I made sure

that my slab (and in turn the assigned diaphragm) attached to the grid and that the slabs were drawn after the frames were in place.

The following Figures (Figures 2 and 3) illustrate the portion of the lateral system that was modeled.

Lateral System Layout

Verifying the Model

Now that I had a working model, I continued to verify that the model was behaving properly by adding a 100 kip test load (in each the x and the y direction) and observing the behaviors. First, I checked to see if the ETABS generated centers of mass and centers of rigidity appeared to be reasonable. It can be seen on Figure 4 below that these centers do appear to be reasonable with respect to the simplified model. It may be important to note that the center of rigidity for the first story is on the foundation wall, which makes sense due to the foundation wall having a high rigidity. On stories 2-4, the center of rigidity is much closer to the centers of mass due to the foundation wall discontinuing after the first story.

	CC	M	COR			
Story	х	Y	х	Y		
1	52.2	43.5	85.661	0.0057		
2	41.9091	39.4545	48.5779	21.2733		
3	41.9091	39.4545	48.0732	26.562		
4	41.9091	39.4545	49.4287	30.5032		

COM & COR

Next, I verified that the deflected shape of the frames was reasonable under the 100 kip test load. Finally, I looked at the base reactions of each of the elements and ensured that when each of the 100 kip loads were applied that the sum of the applied forces and base reactions equaled zero. This verification may be seen in Figures 5 and 6 below. From the two Figures, it is evident that the foundation walls do a lot of the work in resisting the applied loads.

Figure 5: 100 kip Force in X-Direction to Verify Sum of Forces Equals Zero

100 kip Force in Y-Direction

Figure 6: 100 kip Force in Y-Direction to Verify Sum of Forces Equals Zero

As I was verifying the model, I noticed that members of frames which were not in plane with the forces exhibited axial forces. These axial forces are due to the effects of torsion. Torsion is induced on the building because there is eccentricity due to the centers of mass and centers of rigidity not sharing the same locations. The torsion is then resisted by all of the frames, causing axial forces in members which are not in plane with the force.

Determination of Loads

Wind Load Cases

The four wind cases illustrated in ASCE7-98 Figure 6-9 were used to calculate the applied wind forces. The wind forces were distributed vertically by multiplying the calculated distributed load (psf) by the tributary height of each story to obtain a linear load for the diaphragm edge. The linear load was then multiplied by the tributary width of the story to obtain a point load. These calculations may be seen below. These forces were then horizontally distributed by applying each force to each stories' center of pressure. In order to further simplify the ETABS input (and avoid more human error) the windward and leeward forces were added together to obtain one force to apply to the stories' center of pressure. The resultant forces and locations may be seen below.

Wind Case 1

								Wall Length		
	Diaphragm	p (psf)	*	Height (ft)	=	W (plf)	*	(ft)	=	Pw (kip)
RD	Level 1	7.73	*	13.33	=	103.20	*	98.0	=	10.2
A v »	Level 2	9.18	*	13.33	=	122.40	*	88.0	=	10.8
N A A	Level 3	10.17	*	17.17	=	174.60	*	79.5	=	13.9
N	Roof	14.86	*	20.50	=	304.80	*	83.5	=	25.5

North-South Direction

								wali Length		
_	Diaphragm	p (psf)	*	Height (ft)	=	W (plf)	*	(ft)	=	Pw (kip)
Q	Level 1	-7.26	*	13.33	=	-96.90	*	98.0	=	-9.5
/AR	Level 2	-7.26	*	13.33	=	-96.90	*	88.0	=	-8.6
N D	Level 3	-7.26	*	17.17	=	-124.70	*	79.5	=	-10
Ξ.	Roof	-10.51	*	20.50	=	-215.50	*	83.5	=	-18

Diaphragm	Force to Apply	Location			
Diapinagin	Р	х	У		
Level 1	19.7	49.0	56.5		
Level 2	19.4	44.0	37.3		
Level 3	23.9	39.8	37.8		
Roof	43.5	41.8	40.0		

.

East-West Direction

								Wall Length		
	Diaphragm	p (psf)	*	Height (ft)	=	W (plf)	*	(ft)	=	Pw (kip)
^C	Level 1	7.72	*	13.33	=	103.00	*	113.0	=	11.7
MA »	Level 2	9.31	*	13.33	=	124.20	*	74.5	=	9.3
ND A	Level 3	10.39	*	17.17	=	178.40	*	75.5	=	13.5
\mathbb{R}	Roof	15.05	*	20.50	=	308.60	*	80.0	=	24.7

								Wall Length		
	Diaphragm	p (psf)	*	Height (ft)	=	W (plf)	*	(ft)	=	Pw (kip)
	Level 1	-4.29	*	13.33	=	-57.30	*	113.0	=	-6.5
/AR	Level 2	-4.29	*	13.33	=	-57.30	*	74.5	=	-4.3
ЪР	Level 3	-4.29	*	17.17	=	-73.80	*	75.5	=	-5.6
	Roof	-7.50	*	20.50	=	-153.80	*	80.0	=	-12.4

Wind Case 2

For wind case 2, because the effects of an applied moment are being calculated, the worst case for the applied forces had to be determined. The worst case may be seen below.

North-South Direction

								Wall Length		
	Diaphragm	p (psf)	*	Height (ft)	=	W (plf)	*	(ft)	=	Pw (kip)
RD	Level 1	7.73	*	13.33	=	103.20	*	49.0	=	5.1
N ∧	Level 2	9.18	*	13.33	=	122.40	*	44.0	=	5.4
	Level 3	10.17	*	17.17	=	174.60	*	39.8	=	7
Ž	Roof	14.86	*	20.50	=	304.80	*	41.8	=	12.8

Angela Mincemoyer | Structural

					Heigh	nt				,	Wall Leng	gth	
	Dia	phragm	p (psf)	*	(ft)	*	0.75	=	W (plf)	*	(ft)	=	Pw (kip)
RD /	Le	evel 1	7.73	*	13.33	3 *	0.75	=	77.40	*	49.0	=	3.8
MA NA	Le	evel 2	9.18	*	13.33	3 *	0.75	=	91.80	*	44.0	=	4.1
ND/ 0.75	Le	evel 3	10.17	*	17.17	7 *	0.75	=	131.00	*	39.8	=	5.3
₹ C		Roof	14.86	*	20.50) *	0.75	=	228.60	*	41.8	=	9.6
										Wall Lengt	:h		
		Diaphra	igm	o (psf)	*	Height (ft)	=	W (plf)	*	(ft)	=	Pw (l	kip)
		Level	1	-7.26	*	13.33	=	-96.90	*	49.0	=	-4.	8
/AR		Level	2	-7.26	*	13.33	=	-96.90	*	44.0	=	-4.	3
× EE	Δ.	Level	3	-7.26	*	17.17	=	-124.70	*	39.8	=	-5	5
ل ـ		Root	F.	-10.51	*	20.50	=	-215.50	*	41.8	=	-9)
											.,		
				*	Heigh	וt *	0.75		\A((* V	Vall Lengt	th	Deve (leine)
		aphragm		*	(11)		0.75	=	vv (pir)	*	(11)	=	
RD ^		_ever 1	-7.26	*	13.3	<u> </u>	0.75	=	-/2./	*	49.0	=	-3.6
WA 75 F		_evel 2	-7.26	*	13.3	3 [↑]	0.75	=	-/2./	т 	44.0	=	-3.2
ЕЕ [,] 0.7	l	_evel 3	-7.26	*	17.1	7 *	0.75	=	-93.5	*	39.8	=	-3.8
		Roof	-10.51	*	20.5	0 *	0.75	=	-161.6	*	41.8	=	-6.8

Dianhragm Force to Apply		Loca	ation	Dianhragm	Force to Apply	Location		
Diapinagin	Р	х	У	Diapinagin	0.75 P	х	У	
Level 1	9.9	24.5	56.5	Level 1	7.4	73.5	56.5	
Level 2	9.7	22.0	37.3	Level 2	7.3	66.0	37.3	
Level 3	12	19.9	37.8	Level 3	9.1	59.6	37.8	
Roof	21.8	20.9	40.0	Roof	16.4	62.6	40.0	

East-West Direction

Angela Mincemoyer | Structural

									١	Wall Leng	gth		
		Diaphra	gm	p (psf)	* H	eight (ft)	=	W (plf)	*	(ft)	=	Pw	(kip)
D		Level	1	7.72	*	13.33	=	103.00	*	56.5	=	Ę	5.9
VAI	2	Level	2	9.31	*	13.33	=	124.20	*	37.3	=	Z	1.7
ND/ GN	Σ́	Level	3	10.39	*	17.17	=	178.40	*	37.8	=	e	5.8
N		Roof		15.05	*	20.50	=	308.60	*	40.0	=	1	2.4
					Height	_					Wall Len	gth	
	Dia	phragm	p (psf) *	(ft)	*	0.75	=	W (plf)	*	(ft)	=	Pw (kip)
	Le	evel 1	7.72	*	13.33	*	0.75	=	77.3	*	56.5	=	4.4
AN 0 -	Le	evel 2	9.31	*	13.33	*	0.75	=	93.2	*	37.3	=	3.5
ND 1.7.0	Le	evel 3	10.39	*	17.17	*	0.75	=	133.8	*	37.8	=	5.1
≥ _		Roof	15.05	*	20.50	*	0.75	=	231.5	*	40.0	=	9.3
VARD		Diaphi Leve Leve	ragm el 1 el 2	p (psf) -4.29 -4.29	* * *	leight (ft) 13.33 13.33	= = =	W (plf) -57.30 -57.30	* * *	/all Lengt (ft) 56.5 37.3	:h = = =	Pw (k -3.: -2.:	kip) 3 2
EEV	-	Leve	el 3	-4.29	*	17.17	=	-73.80	*	37.8	=	-2.	8
ل ـ		Roo	of	-7.50	*	20.50	=	-153.80	*	40.0	=	-6.	2
					Heigh	t				v	Vall Leng	th	
	D	iaph <u>r</u> agm	<u>р</u> (ря	sf) *	(ft)	*	0.75	=	W (plf)	*	<u>(</u> ft)	=	Pw (kip)
Ω.		Level 1	-4.2	9 *	13.33	*	0.75	=	-43.00	*	56.5	=	-2.5
/AR 5 P _L		Level 2	-4.2	9 *	13.33	*	0.75	=	-43.00	*	37.3	=	-1.7
EV. D.7!	_	Level 3	-4.2	9 *	17.17	*	0.75	=	-55.30	*	37.8	=	-2.1
Ц		Roof	-7.5	0 *	20.50	*	0.75	=	-115.30	*	40.0	=	-4.7
					Pw				P				

Diaphragm	Force to Apply	Loca	ition	Diaphragm	Force to Apply	Loca	ition
1 0	P	х	У		0.75 P	х	У
Level 1	9.2	49.0	84.8	Level 1	6.9	49.0	28.3
Level 2	6.9	44.0	55.9	Level 2	5.2	44.0	18.6
Level 3	9.6	39.8	56.6	Level 3	7.2	39.8	18.9
Roof	18.6	41.8	60.0	Roof	14.0	41.8	20.0

Peggy Ryan Williams Center Page 16

Wind Case 3

North-South Direction

				Height						Wall Length		
	Diaphragm	p (psf)	*	(ft)	*	0.75	=	W (plf)	*	(ft)	=	Pw (kip)
RD /	Level 1	7.73	*	13.33	*	0.75	=	77.40	*	98.0	=	7.6
MA P_	Level 2	9.18	*	13.33	*	0.75	=	91.80	*	88.0	=	8.1
ND' 1.75	Level 3	10.17	*	17.17	*	0.75	=	131.00	*	79.5	=	10.5
N N	Roof	14.86	*	20.50	*	0.75	=	228.60	*	83.5	=	19.1

				Height						Wall Length		
	Diaphragm	p (psf)	*	(ft)	*	0.75	=	W (plf)	*	(ft)	=	Pw (kip)
	Level 1	-7.26	*	13.33	*	0.75	=	-72.70	*	98.0	=	-7.2
AR 5 P _L	Level 2	-7.26	*	13.33	*	0.75	=	-72.70	*	88.0	=	-6.4
0.7!	Level 3	-7.26	*	17.17	*	0.75	=	-93.50	*	79.5	=	-7.5
Ш -	Roof	-10.51	*	20.50	*	0.75	=	-161.60	*	83.5	=	-13.5

East-West Direction

				Height						Wall Length		
	Diaphragm	p (psf)	*	(ft)	*	0.75	=	W (plf)	*	(ft)	=	Pw (kip)
, RD	Level 1	7.72	*	13.33	*	0.75	=	77.30	*	113.0	=	8.8
NA Pv	Level 2	9.31	*	13.33	*	0.75	=	93.20	*	74.5	=	7.0
ND 0.75	Level 3	10.39	*	17.17	*	0.75	=	133.80	*	75.5	=	10.2
₹	Roof	15.05	*	20.50	*	0.75	=	231.50	*	80.0	=	18.6
				Height						Wall Length		

				Height						wan Length		
	Diaphragm	p (psf)	*	(ft)	*	0.75	=	W (plf)	*	(ft)	=	Pw (kip)
Δ.	Level 1	-4.29	*	13.33	*	0.75	=	-43.00	*	113.0	=	-4.9
/AR 5 P _L	Level 2	-4.29	*	13.33	*	0.75	=	-43.00	*	74.5	=	-3.3
0.7!	Level 3	-4.29	*	17.17	*	0.75	=	-55.30	*	75.5	=	-4.2
E C	Roof	-7.50	*	20.50	*	0.75	=	-115.30	*	80.0	=	-9.3

Diaphragm	Force to Apply	Loca	ition
Diapinagin	Р	х	У
Level 1	14.8	49.0	56.5
Level 2	14.5	44.0	37.3
Level 3	18.0	39.8	37.8
Roof	32.6	41.8	40.0

Dianhragm	Force to Apply	Location				
Diapinagin	Р	х	У			
Level 1	13.7	49.0	56.5			
Level 2	10.3	44.0	37.3			
Level 3	14.4	39.8	37.8			
Roof	27.9	41.8	40.0			

Wind Case 4

For wind case 4, because the effects of an applied moment are being calculated, the worst case for the applied forces had to be determined. The worst case may be seen below.

				Height						Wall Length		
	Diaphragm	p (psf)	*	(ft)	*	0.56	=	W (plf)	*	(ft)	=	Pw (kip)
RD /	Level 1	7.73	*	13.33	*	0.56	=	57.80	*	49.0	=	2.9
WA ₽^	Level 2	9.18	*	13.33	*	0.56	=	68.60	*	44.0	=	3.1
ND' 0.56	Level 3	10.17	*	17.17	*	0.56	=	97.80	*	39.8	=	3.9
ž	Roof	14.86	*	20.50	*	0.56	=	170.70	*	41.8	=	7.2
				Height						Wall Length		
	Diaphragm	p (psf)	*	(ft)	*	0.75	=	W (plf)	*	(ft)	=	Pw (kip)
RD /	Level 1	7.73	*	13.33	*	0.75	=	77.40	*	49.0	=	3.8
MA P v	Level 2	9.18	*	13.33	*	0.75	=	91.80	*	44.0	=	4.1
ND' 0.75	Level 3	10.17	*	17.17	*	0.75	=	131.00	*	39.8	=	5.3
₹	Roof	14.86	*	20.50	*	0.75	=	228.60	*	41.8	=	9.6

North-South Direction

				Height						Wall Length		
	Diaphragm	p (psf)	*	(ft)	*	0.56	=	W (plf)	*	(ft)	=	Pw (kip)
Δ.	Level 1	-7.26	*	13.33	*	0.56	=	-54.30	*	49.0	=	-2.7
/AR 5 P _L	Level 2	-7.26	*	13.33	*	0.56	=	-54.30	*	44.0	=	-2.4
EE V 0.5(Level 3	-7.26	*	17.17	*	0.56	=	-69.90	*	39.8	=	-2.8
3	Roof	-10.51	*	20.50	*	0.56	=	-120.70	*	41.8	=	-5.1
				Height						Wall Length		
	Diaphragm	p (psf)	*	(ft)	*	0.75	=	W (plf)	*	(ft)	=	Pw (kip)
	Level 1	-7.26	*	13.33	*	0.75	=	-72.70	*	49.0	=	-3.6
/AR 5 P _L	Level 2	-7.26	*	13.33	*	0.75	=	-72.70	*	44.0	=	-3.2
EEV 0.7	Level 3	-7.26	*	17.17	*	0.75	=	-93.50	*	39.8	=	-3.8
Ш -	Roof	-10.51	*	20.50	*	0.75	=	-161.60	*	41.8	=	-6.8

	Force to	Loca	ition
Diaphragm	Apply		
	0.56 P	х	у
Level 1	5.6	24.5	56.5
Level 2	5.5	22.0	37.3
Level 3	6.7	19.9	37.8
Roof	12.3	20.9	40.0

Dianhragm	Force to Apply	Location				
Diapinagin	0.75 P	х	У			
Level 1	7.4	73.5	56.5			
Level 2	7.3	66.0	37.3			
Level 3	9.1	59.6	37.8			
Roof	16.4	62.6	40.0			

East-West Direction

				Height						Wall Length		
_	Diaphragm	p (psf)	*	(ft)	*	0.56	=	W (plf)	*	(ft)	=	Pw (kip)
RD	Level 1	7.72	*	13.33	*	0.56	=	57.70	*	56.5	=	3.3
MA NA	Level 2	9.31	*	13.33	*	0.56	=	69.60	*	37.3	=	2.6
ND/	Level 3	10.39	*	17.17	*	0.56	=	99.90	*	37.8	=	3.8
N −	Roof	15.05	*	20.50	*	0.56	=	172.80	*	40.0	=	7
-												
				Height						Wall Length		
-	Diaphragm	p (psf)	*	(ft)	*	0.75	=	W (plf)	*	(ft)	=	Pw (kip)
CRD >	Level 1	7.72	*	13.33	*	0.75	=	77.30	*	56.5	=	4.4
A V P v	Level 2	9.31	*	13.33	*	0.75	=	93.20	*	37.3	=	3.5
ND .75	Level 3	10.39	*	17.17	*	0.75	=	133.80	*	37.8	=	5.1
N N	Roof	15.05	*	20.50	*	0.75	=	231.50	*	40.0	=	9.3
				Height						Wall Length		
	Diaphragm	p (psf)	*	Height (ft)	*	0.56	=	W (plf)	*	Wall Length (ft)	=	Pw (kip)
Δ	Diaphragm Level 1	p (psf) -4.29	*	Height (ft) 13.33	*	0.56	=	W (plf) -32.10	*	Wall Length (ft) 56.5	=	Pw (kip) -1.9
/ARD 5 P _L	Diaphragm Level 1 Level 2	p (psf) -4.29 -4.29	*	Height (ft) 13.33 13.33	*	0.56 0.56 0.56	= = =	W (plf) -32.10 -32.10	*	Wall Length (ft) 56.5 37.3	=	Pw (kip) -1.9 -1.2
EWARD 0.56 P _L	Diaphragm Level 1 Level 2 Level 3	p (psf) -4.29 -4.29 -4.29	* * *	Height (ft) 13.33 13.33 17.17	* * * *	0.56 0.56 0.56 0.56	= = = =	W (plf) -32.10 -32.10 -41.30	* * * *	Wall Length (ft) 56.5 37.3 37.8	=	Pw (kip) -1.9 -1.2 -1.6
LEEWARD 0.56 P _L	Diaphragm Level 1 Level 2 Level 3 Roof	p (psf) -4.29 -4.29 -4.29 -7.50	* * * * *	Height (ft) 13.33 13.33 17.17 20.50	* * * *	0.56 0.56 0.56 0.56 0.56	= = = =	W (plf) -32.10 -32.10 -41.30 -86.10	* * * *	Wall Length (ft) 56.5 37.3 37.8 40.0	= = = = =	Pw (kip) -1.9 -1.2 -1.6 -3.5
LEEWARD 0.56 P _L	Diaphragm Level 1 Level 2 Level 3 Roof	p (psf) -4.29 -4.29 -4.29 -7.50	* * * *	Height (ft) 13.33 13.33 17.17 20.50	* * * *	0.56 0.56 0.56 0.56 0.56	= = = =	W (plf) -32.10 -32.10 -41.30 -86.10	* * * *	Wall Length (ft) 56.5 37.3 37.8 40.0	=	Pw (kip) -1.9 -1.2 -1.6 -3.5
LEEWARD 0.56 P _L	Diaphragm Level 1 Level 2 Level 3 Roof	p (psf) -4.29 -4.29 -4.29 -7.50	* * * *	Height (ft) 13.33 13.33 17.17 20.50 Height	* * * * *	0.56 0.56 0.56 0.56 0.56	= = = =	W (plf) -32.10 -32.10 -41.30 -86.10	* * * *	Wall Length (ft) 56.5 37.3 37.8 40.0 Wall Length	= = = =	Pw (kip) -1.9 -1.2 -1.6 -3.5
LEEWARD 0.56 P _L	Diaphragm Level 1 Level 2 Level 3 Roof Diaphragm	p (psf) -4.29 -4.29 -4.29 -7.50 p (psf)	* * * *	Height (ft) 13.33 13.33 17.17 20.50 Height (ft)	* * * *	0.56 0.56 0.56 0.56 0.56	= = = = =	W (plf) -32.10 -32.10 -41.30 -86.10 W (plf)	* * * * *	Wall Length (ft) 56.5 37.3 37.8 40.0 Wall Length (ft)		Pw (kip) -1.9 -1.2 -1.6 -3.5 Pw (kip)
کل LEEWARD د 0.56 P ₁	Diaphragm Level 1 Level 2 Level 3 Roof Diaphragm Level 1	p (psf) -4.29 -4.29 -4.29 -7.50 p (psf) -4.29	* * * * *	Height (ft) 13.33 13.33 17.17 20.50 Height (ft) 13.33	* * * * *	0.56 0.56 0.56 0.56 0.56 0.75 0.75	= = = = = =	W (plf) -32.10 -32.10 -41.30 -86.10 W (plf) -43.00	* * * * *	Wall Length (ft) 56.5 37.3 37.8 40.0 Wall Length (ft) 56.5		Pw (kip) -1.9 -1.2 -1.6 -3.5 Pw (kip) -2.5
VARD LEEWARD 5 P _L 0.56 P _L	Diaphragm Level 1 Level 2 Level 3 Roof Diaphragm Level 1 Level 2	p (psf) -4.29 -4.29 -7.50 p (psf) -4.29 -4.29	* * * * *	Height (ft) 13.33 13.33 17.17 20.50 Height (ft) 13.33 13.33	* * * * * *	0.56 0.56 0.56 0.56 0.56 0.75 0.75	= = = = = = =	W (plf) -32.10 -32.10 -41.30 -86.10 W (plf) -43.00 -43.00	* * * * *	Wall Length (ft) 56.5 37.3 37.8 40.0 Wall Length (ft) 56.5 37.3		Pw (kip) -1.9 -1.2 -1.6 -3.5 Pw (kip) -2.5 -1.7
EEWARD LEEWARD 0.75 P _L 0.56 P _L	Diaphragm Level 1 Level 2 Level 3 Roof Diaphragm Level 1 Level 2 Level 3	p (psf) -4.29 -4.29 -7.50 p (psf) -4.29 -4.29 -4.29	* * * * * *	Height (ft) 13.33 13.33 17.17 20.50 Height (ft) 13.33 13.33 13.33	* * * * *	0.56 0.56 0.56 0.56 0.56 0.75 0.75 0.75 0.75		W (plf) -32.10 -32.10 -41.30 -86.10 W (plf) -43.00 -43.00 -55.30	* * * * *	Wall Length (ft) 56.5 37.3 37.8 40.0 Wall Length (ft) 56.5 37.3 37.8		Pw (kip) -1.9 -1.2 -1.6 -3.5 Pw (kip) -2.5 -1.7 -2.1
LEEWARD LEEWARD 0.75 PL 0.56 PL	Diaphragm Level 1 Level 2 Level 3 Roof Diaphragm Level 1 Level 2 Level 3 Roof	p (psf) -4.29 -4.29 -7.50 p (psf) -4.29 -4.29 -4.29 -4.29 -7.50	* * * * * *	Height (ft) 13.33 13.33 17.17 20.50 Height (ft) 13.33 13.33 17.17 20.50	* * * * * *	0.56 0.56 0.56 0.56 0.56 0.75 0.75 0.75 0.75 0.75		W (plf) -32.10 -32.10 -41.30 -86.10 W (plf) -43.00 -43.00 -55.30 -115.30	* * * * * *	Wall Length (ft) 56.5 37.3 37.8 40.0 Wall Length (ft) 56.5 37.3 37.8 40.0		Pw (kip) -1.9 -1.2 -1.6 -3.5 Pw (kip) -2.5 -1.7 -2.1 -2.1 -4.7
LEEWARD LEEWARD 0.75 P _L 0.56 P _L	Diaphragm Level 1 Level 2 Level 3 Roof Diaphragm Level 1 Level 2 Level 3 Roof	p (psf) -4.29 -4.29 -7.50 p (psf) -4.29 -4.29 -4.29 -4.29 -7.50	* * * * * *	Height (ft) 13.33 13.33 17.17 20.50 Height (ft) 13.33 13.33 17.17 20.50	* * * * * * * * * * * *	0.56 0.56 0.56 0.56 0.75 0.75 0.75 0.75 0.75		W (plf) -32.10 -32.10 -41.30 -86.10 W (plf) -43.00 -43.00 -55.30 -115.30	* * * * *	Wall Length (ft) 56.5 37.3 37.8 40.0 Wall Length (ft) 56.5 37.3 37.8 40.0		Pw (kip) -1.9 -1.2 -1.6 -3.5 -3.5 Pw (kip) -2.5 -1.7 -2.1 -2.1 -4.7

Dianhragm	Force to Apply	Loca	ntion
Diapinagin	0.56 P	х	у
Level 1	5.2	49.0	28.3
Level 2	3.8	44.0	18.6
Level 3	5.4	39.8	18.9
Roof	10.5	41.8	20.0

Dianhragm	Force to Apply	Loca	tion
Diapinagin	0.75 P	х	у
Level 1	6.9	49.0	84.8
Level 2	5.2	44.0	55.9
Level 3	7.2	39.8	56.6
Roof	14.0	41.8	60.0

Seismic Load Cases

Four seismic load cases were used to calculate the applied seismic forces. Two of these load cases were in the North-South direction, accounting for positive and negative accidental torsion, and two were in the East-West direction, accounting for accidental torsion in that direction. The seismic forces were calculated for each floor of the building and then applied to the center of mass of each floor. Because the seismic forces which were originally calculated in Technical Report 2 included the mass of the entire building, each seismic story force was adjusted to account for the decrease in the building's mass (since the model only included the west portion of the building). The accidental torsional moment was calculated by multiplying 5% of the Bx dimension (the length of the building face perpendicular to the force) by the story force. The seismic force calculations may be viewed below.

Diaphragm	Story Force (kips)	Adjustment	Adj Story Force (kips)	Story Shear (V _i) (kips)	Bx (ft)	5% Bx (ft)	Ах	Mz (ft-kip)
Level 1	25.77	0.53	13.62	13.62	98.00	4.9	1.0	66.8
Level 2	15.42	0.35	5.45	19.07	88.00	4.4	1.0	24.0
Level 3	18.49	0.41	7.50	26.57	79.50	3.975	1.0	29.9
Roof	8.79	0.40	3.49	30.07	83.50	4.175	1.0	14.6

North-South Direction

East-West Direction

Diaphragm	Story Force (kips)	Adjustment	Adj Story Force (kips)	Story Shear (V _i) (kips)	By (ft)	5% By (ft)	Ах	Mz (ft-kip)
Level 1	25.77	0.53	13.62	13.62	113.00	5.65	1.0	77.0
Level 2	15.42	0.35	5.45	19.07	74.50	3.725	1.0	20.4
Level 3	18.49	0.41	7.50	26.57	75.50	3.775	1.0	28.4
Roof	8.79	0.40	3.49	30.07	80.00	4	1.0	14.0

Distribute Lateral Forces to Beams

Due to the way in which ETABS performs its calculations and the way the frames interact with the diaphragm, the program would not provide the beam forces. Therefore, the story forces were distributed to the beams by hand using a relative stiffness method. The calculation of the beam forces may be viewed below.

Equations Used

Beam Axial Stiffness:

$$k = \frac{12E(I_1+I_2)}{h^3}$$

Shear Wall Stiffness: $k = \frac{3 E I}{h^3}$

Distribution of Forces: $V_i = \frac{k_i * V}{\sum k_i}$

FRAME K

W 18x35 Beam Resists forces in EW direction

E =	29000	ksi
$I_1 =$	93.4	in ⁴
I ₂ =	272	in⁵
h =	159.96	in
k =	31.07	k/in
k _i ∕∑ki =	0.0002	

Story	Load Case/Combo	Story Force	Р	M max
SLUTY		(kip)	(kip)	(ft-kip)
Story1	Wind - Case 1 - EW	-18.2	-0.0034	-2.3079
Story1	Wind - Case 3 - NS EW	-13.7	-0.0025	-1.8824
Story1	Earthquake EW	-25.77	-0.0048	-1.9567
Story1	Wind - Case 2 EW	-16.1	-0.0030	-2.0718
Story1	Wind - Case 4 NS EW	-12.1	-0.0023	-1.6422

SOUTH FOUNDATION WALL

Resists forces in EW direction

E =	3605.0	ksi
t =	20.5	in
b =	1092	in
h =	159.96	in
k =	166975.8	k/in
k _i /∑ki =	0.9998	

FRAME 9

W 18x35 Beam Resists forces in NS direction

E =	29000	ksi
$I_1 =$	93.4	in ⁴
I ₂ =	272	in⁵
h =	159.96	in
k =	31.07	k/in
k _i /∑ki =	0.0006	

Story	Load Case/Combo	Story Force	Р	M max
Story		(kip)	(kip)	(ft-kip)
Story1	Wind - Case 1 - NS	-19.7	-0.0117	-2.8319
Story1	Wind - Case 3 - NS EW	-14.8	-0.0088	-3.6253
Story1	Earthquake NS	-25.77	-0.0154	-1.3853
Story1	Wind - Case 2 NS	-17.3	-0.0103	-2.7217
Story1	Wind - Case 4 NS EW	-13.0	-0.0078	-3.1441

FRAME 10

W 18x40 Beam

Resists forces in NS direction

E =	29000	ksi
I ₁ =	93.4	in ⁴
I ₂ =	272	in⁵
h =	159.96	in
k =	31.07	k/in

 $k_i / \sum ki = 0.0006$

Story	Load Case/Combo	Story Force	Р	M max
Story		(kip)	(kip)	(ft-kip)
Story1	Wind - Case 1 - NS	-19.7	-0.0117	2.8167
Story1	Wind - Case 3 - NS EW	-14.8	-0.0088	2.8469
Story1	Earthquake NS	-25.77	-0.0154	1.4774
Story1	Wind - Case 2 NS	-17.3	-0.0103	2.5823
Story1	Wind - Case 4 NS EW	-13.0	-0.0078	2.4872

FRAME 13.1

W 18x35 Beam

Resists forces in NS direction

E =	29000	ksi
I ₁ =	93.4	in ⁴
I ₂ =	272	in⁵
h =	159.96	in
k =	31.07	k/in
k _i /∑ki =	0.3333	

Story	Load Case/Combo	Story Force	Р	M max
Story		(kip)	(kip)	(ft-kip)
Story2	Wind - Case 1 - NS	-19.4	-6.47	6.6833
Story2	Wind - Case 3 - NS EW	-14.5	-4.83	0.5345
Story2	Earthquake NS	-15.42	-5.14	3.65
Story2	Wind - Case 2 NS	-17.0	-5.67	5.1921
Story2	Wind - Case 4 NS EW	-12.8	-4.27	0.6033

EAST FOUNDATION WALL

Resists forces in NS direction

E =	3605.0	ksi
t =	20.5	in
b =	360	in
h =	159.96	in
k =	52017.38	k/in
k. /5ki =	0.9982	
K_{1}/Σ_{1}		

Determination of Worst Case Wind/Seismic

The following shows a compilation of the ETABS output which illustrates the axial forces and moments of each member for each frame. Both the worst case for the axial force and for the moment was determined. Ultimately, the axial force will dictate the worst case lateral force for each frame because the magnitudes of the axial forces are much larger and in turn more significant than those of the moments.

NOTE: Positive numbers denote tension and negative numbers denote compression.

FRAME K

			Р	M2	M3				_			
Story	Column	Load Case/Combo	kip	kip-ft	kip-ft							
Story1	К12	Wind - Case 1 - NS	-0.163	-0.1379	2.3269							
Story1	К12	Wind - Case 1 - EW	158.682	-2.2618	-0.4562							
Story1	К12	Wind - Case 3 - NS EW	119.336	-1.8064	1.4005		WORST CASE	E (magnitude)				
Story1	К12	Earthquake NS +moment	-0.028	-0.052	1.1484	Axial	158.682	Wind - Case 1 - EW				
Story1	К12	Earthquake EW +moment	72.448	-1.101	-0.2764	Moment	2.3269	Wind - Case 1 - NS				
Story1	К12	Earthquake NS -moment	72.468	-1.0345	-0.5191	-						
Story1	К12	Earthquake EW -moment	72.468	-1.0345	-0.5191							
Story1	К12	Wind - Case 2 NS	-0.127	-0.0708	1.8818							
Story1	К12	Wind - Case 2 EW	139.607	-1.9506	-0.5252							
Story1	К12	Wind - Case 4 NS EW	104.674	-1.592	1.2627							
Story	Column	Load Case/Combo	P	M2	M3							
5.019	conunni	Load Case/ Combo	kip	kip-ft	kip-ft							
Story1	К13.1	Wind - Case 1 - NS	51.851	0.6939	0.5855							
Story1	K13.1	Wind - Case 1 - EW	-108.165	0.2385	9.1857				.			
Story1	K13.1	Wind - Case 3 - NS EW	-120.322	0.6996	7.3574		WORST CASE	E (magnitude)				
Story1	К13.1	Earthquake NS +moment	-23.18	0.3508	0.2226	Axial	120.322	Wind - Case 3 - NS EW				
Story1	K13.1	Earthquake EW +moment	-52.862	0.1075	4.8237	Moment	9.1857	Wind - Case 1 - EW				
Story1	K13.1	Earthquake NS -moment	-48.548	-0.0494	4.6112						WORST CAS	E (magnitude)
Story1	K13.1	Earthquake EW -moment	-48.548	-0.0494	4.6112					Avial	158 6920	Mind - Case 1
Story1	K13.1	Wind - Case 2 NS	-41.481	0.4935	0.3487					Akiai	130.0020	Willia - Case a
Story1	К13.1	Wind - Case 2 EW	-92.005	0.1207	7.9561							
Story1	К13.1	Wind - Case 4 NS EW	-106.307	0.6349	6.4772							
Story	Brace	Load Case/Combo	Р	M2	M3							
,	biatec		kip	kip-ft	kip-ft							
Story1	D1	Wind - Case 1 - NS	-4.43	0	0							
Story1	D1	Wind - Case 1 - EW	-23.631	0	0							
Story1	D1	Wind - Case 3 - NS EW	-21.108	0	0		WORST CASE	E (magnitude)				
Story1	D1	Earthquake NS +moment	-1.673	0	0	Axial	-23.631	Wind - Case 1 - EW				
Story1	D1	Earthquake EW +moment	-10.216	0	0	Moment	0					
Story1	D1	Earthquake NS -moment	-7.454	0	0							
Story1	D1	Earthquake EW -moment	-7.454	0	0							
Story1	D1	Wind - Case 2 NS	-1.848	0	0							
Story1	D1	Wind - Case 2 EW	-19.173	0	0							
Story1	D1	Wind - Case 4 NS EW	-18.829	0	0							
Beam	W18x35						WORST CASE	E (magnitude)				
						Axial	-0.0048	Earthquake EW				
						Moment	-2.31	Wind - Case 1 - EW				

 \rightarrow Frame K worst load case was determined to be Wind Case 1 in the East-West direction.

FRAME 9

FRAME	9				
Story	Column	Load Case/Combo	Р	M2	M3
3101 ¥	Column	Eosti Case/ Combo	kip	kip-ft	kip-ft
Story1	E9	Wind - Case 1 - NS	62.8	0.1929	0.3644
Story1	E9	Wind - Case 1 - EW	31.478	-0.1163	7.638
Story1	E9	Wind - Case 3 - NS EW	70.803	0.0568	6.0271
Story1	E9	Earthquake NS +moment	19.387	-0.1027	-0.0847
Story1	E9	Earthquake EW +moment	10.959	-0.2084	4.0475
Story1	E9	Earthquake NS -moment	18.475	-0.168	4.1411
Story1	E9	Earthquake EW -moment	18.475	-0.168	4.1411
Story1	E9	Wind - Case 2 NS	61.775	0.2366	0.3948
Story1	E9	Wind - Case 2 EW	32.766	-0.0537	6.7765
Story1	E9	Wind - Case 4 NS EW	61.195	0.0376	5.2678
Story	Column	Load Case/Combo	P kip	M2 kip-ft	M3 kip-ft
Story1	D9	Wind - Case 1 - NS	-79.368	-0.1005	1.1332
Story1	D9	Wind - Case 1 - EW	-46.702	-2.7714	0.0979
Story1	D9	Wind - Case 3 - NS EW	-94,704	-2.1632	0.9231
Story1	D9	Earthquake NS +moment	-29.882	0.0786	0.0056
Story1	D9	Earthquake EW +moment	-21.827	-1.4545	-0.3208
Story1	D9	Earthquake NS -moment	-30.934	-1.5266	-0.12
Story1	D9	Earthquake EW -moment	-30.934	-1.5266	-0.12
Story1	D9	Wind - Case 2 NS	-76.626	-0.1461	1.2314
Story1	D9	Wind - Case 2 EW	-46.469	-2.4817	0.2585
Story1	D9	Wind - Case 4 NS EW	-82.198	-1.885	0.7684
Story	Brace	Load Case/Combo	P kip	M2 kip-ft	M3 kip-ft
Story1	D4	Wind - Case 1 - NS	22.293	0	0
Story1	D4	Wind - Case 1 - EW	20.485	0	0
Story1	D4	Wind - Case 3 - NS EW	32.158	0	0
Story1	D4	Earthquake NS +moment	14.121	0	0
Story1	D4	Earthquake EW +moment	14.623	0	0
Story1	D4	Earthquake NS -moment	16.763	0	0
Story1	D4	Earthquake EW -moment	16.763	0	0
Story1	D 4	Wind - Case 2 NS	19.982	0	0
Story1	D4	Wind - Case 2 EW	18.438	0	0
Story1	D4	Wind - Case 4 NS EW	28.26	0	0
Beam V	W 18x35				

	WORCE CAO	
Avial	70 903	Mind Core 2 NEEM
Moment	7 638	Wind - Case 1 - FW
	WORST CAS	E (magnitude)
Axial	-94,704	Wind - Case 3 - NS EW
Moment	-2.7714	Wind - Case 1 - EW
	MORST CAR	E (magnitudia)
Axial	32.158	Wind - Case 3 - NS FW
Moment	0	-
	WORST CAS	E (magnitude)
Axial	-0.0154	Wind - Case 1 - NS
Moment	-3.63	Wind - Case 3 - NS EW

 \rightarrow Frame 9 worst load case was determined to be Wind Case 3.

FRAME 10

FRAME	10						
Story	Column	Load Case/Combo	P kip	M2 kip-ft	M3 kip-ft		
Story1	H10	Wind - Case 1 - NS	62.844	-0.1606	1.3537		
Story1	H10	Wind - Case 1 - EW	22.181	-2.5714	-0.2308		
Story1	H10	Wind - Case 3 - NS EW	63.834	-2.0575	0.8409	WORST CASE (magnitude)	
Story1	H10	Earthquake NS +moment	22.518	-0.0333	0.3811	Axial 63.834 Wind - Case 3 - NS EW	
Story1	H10	Earthquake EW +moment	8.689	1.3882	-0.3097	Moment 2.5714 Wind - Case 1 - EW	
Story1	H10	Earthquake NS -moment	11.243	-1.3689	-0.3579		
Story1	H10	Earthquake EW -moment	11.243	-1.3689	-0.3579		
Story1	H10	Wind - Case 2 NS	57.548	-0.1254	1.2014		
Story1	H10	Wind - Case 2 EW	21.306	-2.251	0.1985		
Story1	H10	Wind - Case 4 NS EW	55.774	-1.8058	0.7364		
Story	Column	Load Case/Combo	P kin	M2 kip-ft	M3 kip-ft		
Story1	E10	Wind - Case 1 - NS	-71.342	0.2703	0.3638		
Story1	E10	Wind - Case 1 - EW	-31.469	-0.1592	7.6271		
Story1	E10	Wind - Case 3 - NS EW	-77.207	0.0826	6.0185	WORST CASE (magnitude)	
Story1	E10	Earthquake NS +moment	-27.946	0.0225	-0.0846	Axial -77.207 Wind - Case 3 - NS EW	
Story1	E10	Earthquake EW +moment	-14.934	-0.1579	4.0418	Moment 7.6271 Wind - Case 1 - EW WORST	CASE (magnitude)
Story1	E10	Earthquake NS -moment	-18.981	-0.1899	4.1352		
Story1	E10	Earthquake EW -moment	-18.981	-0.1899	4.1352	Axiai 63.8340	Wind - Case 3 - INS EW
Story1	E10	Wind - Case 2 NS	-65.681	0.2334	0.3942		
Story1	E10	Wind - Case 2 EW	-30.037	-0.1451	6.7668		
Story1	E10	Wind - Case 4 NS EW	-67.443	0.0728	5.2603		
Story	Brace	Load Case/Combo	P kip	M2 kip-ft	M3 kip-ft		
Story1	D2	Wind - Case 1 - NS	13.276	0	0		
Story1	D2	Wind - Case 1 - EW	14.51	0	0		
Story1	D2	Wind - Case 3 - NS EW	20.893	Û	0	WORST CASE (magnitude)	
Story1	D2	Earthquake NS +moment	8.481	0	0	Axial 20.893 Wind - Case 3 - NS EW	
Story1	D2	Earthquake EW +moment	9.757	0	0	Moment 0 -	
Story1	D2	Earthquake NS -moment	12.089	0	0		
Story1	D2	Earthquake EW -moment	12.089	0	0		
Story1	D2	Wind - Case 2 NS	12.707	0	0		
Story1	D2	Wind - Case 2 EW	13.641	0	0		
Story1	D2	Wind - Case 4 NS EW	18.23	0	0		
Beam \	N 18x40					WORST CASE (magnitude)	
						Axial -0.0154 Earthquake NS	
						Moment 2.85 Wind - Case 3 - NS EW	

 \rightarrow Frame 10 worst load case was determined to be Wind Case 3.

FRAME 13.1

FRAME	13.1											
Story	Column	Load Case/Combo	P kip	M2 kip-ft	M3 kip-ft							
Story2	N13.1	Wind - Case 1 - NS	54.802	-0.5153	6.8169							
Story2	N13.1	Wind - Case 1 - EW	-34.57	-5.2862	-3.5117							
Story2	N13.1	Wind - Case 3 - NS EW	15.079	-4.3685	2.4648		WORST CASE	(magnitude)				
Story2	N13.1	Earthquake NS +moment	24.224	-0.3516	3.7804	Axial	54.802	Wind - Case 1 - NS				
Story2	N13.1	Earthquake EW +moment	-12.682	-2.9568	1.7381	Moment	6.8169	Wind - Case 1 - NS				
Story2	N13.1	Earthquake NS -moment	-18.845	-2.6911	-2.8976							
Story2	N13.1	Earthquake EW -moment	-18.845	-2.6911	-2.8976							
Story2	N13.1	Wind - Case 2 NS	42.703	-0.2392	5.1691							
Story2	N13.1	Wind - Case 2 EW	-34.644	-4.493	-3.7091							
Story2	N13.1	Wind - Case 4 NS EW	14.203	-3.8672	2.3253							
Story	Column	Load Case/Combo	P	M2	M3							
Story?	K13.1	Wind - Case 1 - NS	.33.58	2 7824	0.8566							
Story2	K13.1	Wind - Case 1 - EW	-134.886	-2.1703	12.7716							
Story2	К13.1	Wind - Case 3 - NS EW	-126.739	0.4517	10.2651		WORST CASE	(magnitude)	1			
Story2	К13.1	Earthquake NS +moment	-12.229	1.5825	0.3252	Axial	-134.886	Wind - Case 1 - FW				
Story2	К13.1	Earthquake EW +moment	-64.974	-1.0449	7.4116	Moment	12.7716	Wind - Case 1 - EW				
Story2	К13.1	Earthquake NS -moment	-61.738	-1.4191	7.2478				·		WORST CAS	E (magnitude)
Story2	К13.1	Earthquake EW -moment	-61.738	-1.4191	7.2478				_			- ,
Story2	К13.1	Wind - Case 2 NS	-26.088	2.1853	0.6111					Axial	54.8020	Wind - Case 1 - EW
Story2	К13.1	Wind - Case 2 EW	-115.955	-2.1036	11.1385							
Story2	К13.1	Wind - Case 4 NS EW	-111.722	0.4511	9.0213							
Story	Brace	Load Case/Combo	P	M2	M3							
-			kip	kip-ft	kip-ft							
Story2	D5	Wind - Case 1 - NS	-39.251	0	0							
Story2	D5	Wind - Case 1 - EW	20.705	O	0							
Story2	D5	Wind - Case 3 - NS EW	-13.835	0	0		WORST CASE	(magnitude)				
Story2	D5	Earthquake NS +moment	-22.313	0	0	Axial	-39.251	Wind - Case 1 - NS				
Story2	D5	Earthquake EW +moment	10.179	0	0	Moment	0	-				
Story2	D5	Earthquake NS -moment	15.616	0	0							
Story2	D5	Earthquake EW -moment	15.616	0	0							
Story2	D5	Wind - Case 2 NS	-30.718	0	0							
Story2	D5	Wind - Case 2 EW	21.048	0	0							
Story2	D5	Wind - Case 4 NS EW	-12.925	0	0							
Beam W 1							MORETCAR	(momituda)	1			
	8x35					Axial	-6.47	Wind - Case 1 - NS				

 \rightarrow Frame 13.1 worst load case was determined to be Wind Case 1 in the East-West direction.

Determination of Controlling Load Combination

In order to determine the controlling load combination, each frame was modeled in RISA and three separate types of loadings were applied, the dead load, live load, and snow load. An excel sheet was then constructed using both the axial forces and the moments in order to determine the controlling load combination. The load combinations tested were taken from ASCE7-98 Section 2.3.2 and may be viewed below. By inspection, it was determined that only load combinations 2, 3, and 4 had to be calculated. As shown by the calculations below, the controlling load combination for every frame was determined to be 1.2 D + 1.6 W + 0.5 L + 0.5 S.

2.3.2 Basic Combinations

Structures, components, and foundations shall be designed so that their design strength equals or exceeds the effects of the factored loads in the following combinations:

1.	1.4(D + F)
2.	$1.2(D + F + T) + 1.6(L + H) + 0.5(L_r \text{ or } S \text{ or } R)$
3.	$1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (0.5L \text{ or } 0.8W)$
4.	$1.2D + 1.6W + 0.5L + 0.5(L_r \text{ or } S \text{ or } R)$
5.	1.2D + 1.0E + 0.5L + 0.2S
6.	0.9D + 1.6W + 1.6H
7.	0.9D + 1.0E + 1.6H

FRAME K

	/ 1.2 D + 1.6 W + 0.5 L + 0.5 S		-333.3 5 3	2.2		-221.9	6.1		1.4	-23.8		-38.4	0.0
	1.2 D + 1.6 S + 0.8 W		-196.3 3 7			-128.0	7.6		1.1	-16.6		-19.3	0.0
	1.2 D + 1.6 S + 0.5 L		-87.3 7.6	9 1		-55.7	20.6		1.4	-20.3		-0.6	0.0
	1.2 D + 1.6 L + 0.5 S		-118.9	÷		-80.2	33.4		2.2	-32.4		6.0-	0.0
	Wind/Earthquake	Wind - Case 1 - EW	-158.682 2 7518	0102.2		-108.165	-9.1857		0.0034	-2.3079		-23.631	0
			-7.215 -0.062	200.0-		-6.214	-0.122		0.041	-0.13		-0.015	0
	Live Load		-35.929 1 554	L		-28.519	11.468		0.718	-11.14		-0.288	0
_	Dead Load		-48.159 1 618	010.1		-26.231	12.592		0.834	-12.084		-0.333	0
Level 1		Column K12	Axial Force (kip) Moment (f i-kip)		Column K13.1	Axial Force (kip)	Moment (ft-kip)	Beam W18 x 35	Axial Force (kip)	Moment (ft-kip)	Brace	Axial Force (kip)	Moment (ft-kip)

Frame K at Level 1 FRAME 9

ime 9 evel 1				-				
		Member	Reaction Due to:					
	Dead Load	Live Load	Snow	Wind/Earthquake	1.2 D + 1.6 L + 0.5 S	1.2 D + 1.6 S + 0.5 L	1.2 D + 1.6 S + 0.8 W	1.2 D + 1.6 W + 0.5 L + 0.5 S
Column E9				Wind - Case 3 - NS EW				
Axial Force (kip)	-116.696	-93.373	-11.838	-70.803	-295.4	-205.7	-215.6	-305.9
Moment (ft-kip)	0.52	0.603	-0.119	6.0271	1.5	0.7	5.3	10.5
Column D9								
Axial Force (kip)	-88.54	-59.58	-18.96	-94.704	-211.1	-166.4	-212.3	-297.0
Moment (ft-kip)	-6.329	-5.612	-0.144	-2.1632	-16.6	-10.6	-9.6	-13.9
Beam W18 x 35								
Axial Force (kip)	0.989	0.805	0.085	0.0088	2.5	1.7	1.3	1.6
Moment (ft-kip)	13.635	11.615	0.724	3.6253	35.3	23.3	20.4	28.3
Brace								
Axial Force (kip) Moment (ft-kip)	-0.651 0	-0.562 0	-0.029 0	-32.158 0	-1.7 0.0	1.1- 0.0	-26.6 0.0	-52.5 0.0

Peggy Ryan Williams Center Page 32

FRAME 10

Frame 10 at Level 1								
		Member	Reaction Due to:					
	Dead Load	Live Load	Snow	Wind/Earthquake	1.2 D + 1.6 L + 0.5 S	1.2 D + 1.6 S + 0.5 L	1.2 D + 1.6 S + 0.8 W	1.2 D + 1.6 W + 0.5 L + 0.5 S
Column H10				Wind - Case 3 - NS EW				
Axial Force (kip)	-64.894	-52.986	-5.673	-63.834	-165.5	-113.4	-138.0	-209.3
Moment (ft-kip)	14.115	12.964	-0.067	2.0575	37.6	23.3	18.5	26.7
Column E10								
Axial Force (kip)	-57.21	-43.24	-8.07	-77.207	-141.9	-103.2	-143.3	-217.8
Moment (ft-kip)	-7.484	-6.791	-0.039	-6.0185	-19.9	-12.4	-13.9	-22.0
Beam W18 x 40								
Axial Force (kip)	0.313	0.261	0.021	-0.0088	0.8	0.5	0.4	0.5
Moment (ft-kip)	-47.963	-42.85	-0.208	-2.8469	-126.2	-79.3	-60.2	-83.6
Brace								
Axial Force (kip)	0.647	0.603	-0.01	-20.893	1.7	1.1	-16.0	-32.4
Moment (ft-kip)	0	0	0	0	0.0	0.0	0.0	0.0

FRAME 13.1

Level 2		100000	Bonstion Duo to.					
	Dead Load	Live Load	Snow	Wind/Earthquake	1.2 D + 1.6 L + 0.5 S	1.2 D + 1.6 S + 0.5 L	1.2 D + 1.6 S + 0.8 W	1.2 D + 1.6 W + 0.5 L + 0.5 S
Column N13.1				Wind - Case 1 - EW				
Axial Force (kip)	-28.554	-20.709	-4.872	-34.57	-69.8	-52.4	-69.7	-102.4
Moment (ft-kip)	11.975	10.678	0.271	5.2862	31.6	20.1	19.0	28.3
Column K13.1								
Axial Force (kip)	-26.231	-28.519	-6.214	-134.886	-80.2	-55.7	-149.3	-264.7
Moment (ft-kip)	12.592	11.468	-0.122	12.7716	33.4	20.6	25.1	41.2
Beam W18 x 35								
Axial Force (kip)	0.952	1.013	-0.128	0	2.7	1.4	0.9	1.6
Moment (ft-kip)	25.245	23.261	-0.162	2.12	67.4	41.7	31.7	45.2
Brace								
Axial Force (kip)	-0.78	-0.675	-0.036	-20.705	-2.0	-1.3	-17.6	-34.4
Moment (ft-kip)	0	0	0	0	0.0	0.0	0.0	0.0

Frame 13.1 at Level 2

Check Frame Member Strengths

Each frame's elements were checked for strength adequacy. For frames K, 9, and 10, the critical case was found to be at Story 1. For frame 13.1, the critical case was found to be at Story 2 due to one of its columns discontinuing at Level 2, and the foundation wall picking up the load. Each of the columns was checked using the interaction beam-column equations shown below. Due to the small tension forces in the beams, the beams were only checked for their moment strength capacity. Each of the braces was checked for their compression strength. All of the Φ Pn and Φ Mn values were determined using tables found in the Steel Manual. As indicated below, all of the members passed for strength.

Equations Used

$$Pu/\Phi Pn \ge 0.2 \rightarrow \frac{P_u}{\varphi P_n} + \frac{8M_u}{9\varphi M_n} \le 1.0$$

$$Pu/\Phi Pn < 0.2 \rightarrow \frac{P_u}{2\varphi P_n} + \frac{M_u}{\varphi M_n} \le 1.0$$

FRAME K

At Story 1	Member	Pu	ΦPn	Mu	ΦMn	Pu/ΦPn	Pu/ФPn + 8Mu/9ФMn	PASS/FAIL
Column K12	W10x49	-333.3	492.0	6.3	106	0.68	0.73	PASS
Column K13.1	W10x49	-221.9	492.0	6.1	227	0.45	0.47	PASS
Beam	W18x35	1.4	-	-23.8	249			PASS
Brace	HSS8x8x3/8	-38.4	363.0	0.0	-			PASS

FRAME 9

At Story 1	Member	Pu	ΦPn	Mu	ΦMn	Pu/ΦPn	Pu/ΦPn + 8Mu/9ΦMn	PASS/FAIL
Column E9	W10x49	-305.9	492.0	10.5	106	0.62	0.71	PASS
Column D9	W10x49	-297.0	492.0	-13.9	227	0.60	0.66	PASS
Beam	W18x35	1.6	-	28.3	249			PASS
Brace	HSS8x8x3/8	-52.5	363.0	0.0	-			PASS
FRAME 10

At Story 1	Member	Pu	ΦPn	Mu	ΦMn	Pu/ΦPn	Pu/ФPn + 8Mu/9ФMn	PASS/FAIL
Column H10	W10x49	-209.3	492.0	26.7	227	0.43	0.53	PASS
Column E10	W10x49	-217.8	492.0	-22.0	106	0.44	0.63	PASS
Beam	W18x40	0.5	-	-83.6	294			PASS
Brace	HSS8x8x3/8	-32.4	363.0	0.0	-			PASS

FRAME 13.1

	Member	Pu	ΦPn	Mu	ΦMn	Pu/ΦPn	Pu/ΦPn + 8Mu/9ΦMn	PASS/FAIL
Column N13.1	W10x49	-102.4	492.0	28.3	227	0.21	0.32	PASS
Column K13.1	W10x49	-264.7	492.0	41.2	106	0.54	0.88	PASS
Beam	W18x35	1.6	-	45.2	249			PASS
Brace	HSS8x6x3/8	-34.4	278.0	0.0	-			PASS

Check Drift

Seismic Story Drift

Story drift in each direction was checked against the allowable story drift per ASCE7-98 Table 9.5.2.8. As shown below, the story drifts were compared to the value calculated using the equation $0.015h_{sx}$. Each of the directions passed with a large safety margin in respects to the allowable story drift and the check may be viewed below. Accidental torsion was accounted for by checking the story drifts for both the positive and negative moments induced by the accidental torsion. Because the building is classified as Seismic Design Category A, torsional irregularities did not need to be considered.

	Se	ismic Use Gro	up
Structure	Ι	II	III
Structures, other than masonry shear wall or masonry wall frame structures, 4 stories or less with interior walls, partitions, ceilings and exterior wall systems that have been designed to accommodate the story drifts	0.025 <i>h</i> _{sx} ^b	0.020 <i>h</i> _{sx}	0.015 <i>h_{sx}</i>
Masonary cantilever shear wall structures ^c	0.010h _{sx}	0.010h _{sx}	0.010h _{sx}
Other masonry shear wall structures	0.007h _{sx}	0.007h _{sx}	0.007h _{sx}
Masonry wall frame structures	0.013h _{sx}	0.013h _{sx}	0.010h _{sx}
All other structures	0.020h _{sx}	0.015h _{sx}	0.010h _{st}

^bThere shall be no drift limit for single-story structures with interior walls, partitions, ceilings, and exterior wall systems that have been designed to accommodate the story drifts. The structure separation requirement of Section 9.5.2.8 is not waived.

^cStructures in which the basic structural system consists of masonry shear walls designed as vertical elements cantilevered from their base or foundation support which are so constructed that moment transfer between shear walls (coupling) is negligible.

North-South Direction

Positive Moment (due to Accidental Torsion)

Story	Maximum Allowable Drift	Drift - X dirn	Pass/Fail	Drift - Y dirn	Pass/Fail
Level 1	0.19995	0.000106	PASS	0.000174	PASS
Level 2	0.19995	0.000076	PASS	0.000269	PASS
Level 3	0.19995	0.000137	PASS	0.000311	PASS
Roof	0.30000	0.000207	PASS	0.000292	PASS

Negative Moment (due to Accidental Torsion)

Story	Maximum Allowable Drift	Drift - X dirn	Pass/Fail	Drift - Y dirn	Pass/Fail
Level 1	0.19995	0.000013	PASS	0.000019	PASS
Level 2	0.19995	0.000089	PASS	0.000053	PASS
Level 3	0.19995	0.000094	PASS	0.000059	PASS
Roof	0.30000	0.000077	PASS	0.000053	PASS

East-West Direction

Positive Moment (due to Accidental Torsion)

Story	Maximum Allowable Drift	Drift - X dirn	Pass/Fail	Drift - Y dirn	Pass/Fail
Level 1	0.19995	0.000112	PASS	0.000156	PASS
Level 2	0.19995	0.000994	PASS	0.000178	PASS
Level 3	0.19995	0.000999	PASS	0.000178	PASS
Roof	0.30000	0.000758	PASS	0.000156	PASS

Negative Moment (due to Accidental Torsion)

Story	Maximum Allowable Drift	Drift - X dirn	Pass/Fail	Drift - Y dirn	Pass/Fail
Level 1	0.19995	0.000137	PASS	0.000194	PASS
Level 2	0.19995	0.001160	PASS	0.000277	PASS
Level 3	0.19995	0.001178	PASS	0.000291	PASS
Roof	0.30000	0.000888	PASS	0.000242	PASS

Drift Due to Wind

Drift due to each of the four wind load cases was checked against the industry accepted standard of L/400. Each of the load cases passed. However, their safety margin was less than that of the seismic story drifts. It was determined that the wind load case 1 in the East-West direction is critical for drift. This makes sense because this case was also critical for member strength.

Case 1

North-South Direction

Maximum Displacement (in)	Maximum Allowable Displacement L/400 (in)	Pass/Fail
0.596817	1.8	PASS

East-West Direction

Maximum Displacement (in)	Maximum Allowable Displacement L/400 (in)	Pass/Fail
1.174024	1.8	PASS

Case 2

North-South Direction

Maximum Displacement (in)	Maximum Allowable Displacement L/400 (in)	Pass/Fail
0.581527	1.8	PASS

East-West Direction

Maximum Displacement (in)	Maximum Allowable Displacement L/400 (in)	Pass/Fail
1.057958	1.8	PASS

ı.

Case 3

North-South & East-West Direction

Maximum Displacement (in)	Maximum Allowable Displacement L/400 (in)	Pass/Fail
1.081247	1.8	PASS

Case 4

North-South & East-West Direction

ı.

Maximum Displacement (in)	Maximum Allowable Displacement L/400 (in)	Pass/Fail
0.944237	1.8	PASS

Impact on Foundation

The overturning moment due to each wind and seismic was calculated and compared to the resisting moment of the building. Because the controlling overturning moment was in the x direction and the x direction provides the smallest moment arm (thus the smallest resisting moment) for the building, only that overturning moment was checked. It was determined by computing the below calculations that the building's resisting moment is enough to resist the overturning moment induced on the building. Therefore, the foundation design would not need to be altered to resist the overturning moment. Further investigation would need to be done on the foundation to determine if it is adequate to carry the soil loads.

Overturning Moment Due to Wind

Case	Overturning Moment in X-dirn (ft-kip)	Overturning Moment in Y-dirn (ft-kip)
Wind - Case 1 - NS	4345.1	0.0
Wind - Case 1 - EW	0.0	-3594.6
Wind - Case 2 - NS	3819.2	0.0
Wind - Case 2 - EW	0.0	-3164.7
Wind - Case 3 - NS EW	3259.3	-2706.8
Wind - Case 4 - NS EW	2868.1	-2374.9

Overturning Moment Due to Seismic

Case	Overturning Moment in X-dirn (ft-kip)	Overturning Moment in Y-dirn (ft-kip)
Earthquake NS +moment	2021.3	0.0
Earthquake NS -moment	0.0	-2021.3
Earthquake EW +moment	0.0	-2021.3
Earthquake EW -moment	0.0	-2021.3

Check Overturning Moment

Controlling Overturning Moment is Due to Wind = 4345.1 ft-kip

Resisting Moment

Building Weight	6257	kip
Moment Arm	39.5	ft
Resisting Moment	247151.5	ft-kip

Factor Safety for Overturning Moment

Factor of Safety =	56.9	This is greater than the 1.5 factor of
		safety required by code so it passes

Conclusion

The purpose of Technical Report 4 was to determine if the lateral system of the Peggy Ryan Williams Center at Ithaca College is acceptable according to industry standard serviceability and strength considerations. Because of the problems previously discussed in this report, only the west portion of the building's lateral system was created in ETABS. That portion of the building consists of four concentrically braced steel frames and a foundation wall on the east and south sides of the building. Once the model was complete, it was verified by checking its behavior when a 100 kip load was applied in each the x direction and the y direction. Once the model was confirmed, it was used to distribute the lateral forces to each element of the lateral system.

The lateral system was checked for the wind and seismic load cases as described in ASCE7-98. If was determined that the critical load case for all of the frames was one of the wind load cases. This makes sense because the building is located in Ithaca, New York. The critical case for two of the frames was wind load case 1 in the east and west direction. The remaining frames' critical load case was the wind load case 3. These results were then combined with live, dead, and snow loading results from RISA in order to conclude that the controlling load combination was 1.2 D + 1.6 W + 0.5 L + 0.5 S.

Each frame was checked at its critical level in order to determine if it has adequate strength. It was found that each member of each frame's critical level is adequate with regards to strength. Drift due to both wind and seismic loading was also checked. The lateral system was found to be adequate with respect to industry standard serviceability. Finally, overturning moments and impact on the foundation was considered. A large factor of safety for the overturning moment on the foundation was found. Therefore, the foundation was determined to be adequate. However, the foundation would also need to be checked for soil loads.

Upon completion of the lateral system analysis of the Peggy Ryan Williams Center, it has been determined that the building's lateral system is acceptable according to industry standard serviceability and strength conditions.

Appendix A

Appendix B

Gravity Loads from Technical Report 2

	Angela. Gravity Loads Mincemayer	Tech Report a	8/43
	LIVE LOADS:	an Roof Live Loods	· ····································
	required the use of equation 4.4 12= Lr=20). The variable Ri \$ R2 rely on the Because I am looking for a (I do not have a tributary are conservative and set Lr=	in Koot Live Loads 2 (Lr=20R,R2,where typical psf 20) 1 will be 20 psf.	
	(ASCE7-98) roof live lood = 20 psf		
	- No design roof live lood was > roof snow lood most likely	provided. Controlled	
	SNOW LOADS:		91 ¹⁰ 1
	Uniform Ground Snow lood (pg) = 41	5 psf	
	pf= 0.7 CeCtIpg		
	$min p_{f} = 20.I$		
	Exposure Factor (Ce) = 1.0 - partially exposed - exposure B		
	Thermal Factor $(C_t) = 1.0$		
	Importance Factor $(I) = 1.1$ - category II		
	$\Rightarrow p_f = 0.7(1.0)(1.0)(1.1)(45) = 34.$	US psf	
	$\frac{\text{Check min } p_{f}:}{\text{min } p_{f} = 20 \cdot I = 20}$	(1,1) = 22 psf < 34.65	v fec
*	$\rightarrow p_{f} = 35 psf$		
	* design uniform flat-ra	of snow load= 35 psf	
_	→ the design matches t	he code minimum	

	Angela Mincemayer Gravity Loads Tech Report 2	10/43
	LIVE LOADS:	
	Live load= 80 psf	
	(corridors above first floor used for flexibility)	
	→ design interior floor live load = 80 psf	
	> the design matches the code minimum	
· · · · ·		· · · · · · · ·
\sim		
*		

	Angela Gravity Loads Tech Report 2 11/4 Mincempyer	13
	Non-Typical Loads:	
	Green Roof: (detail H7 - roof type RS-2)	
	DEAD . vegetation : planting medium = 70 psf	
	water retention composite = 2 pst	
	H" extended polyetyrene includtion = 1 ast	
	drainage composite = 2 psf	
	root barrier = 2 psf	
	hat fluid applied roofing = 2 psf	
	ls" concrete slab on 3"×20 ga = 57 psf (pg.54 of galvanized composite metal deck Vulcraft catalog)	
· · · · · · · · · · · · · · · · · · ·	misc & Super imposed:	
	Same as typical roof bay = 33 psf Tatal Roof Deod Lood = 171 psf (Design dead lood = 120 psf)	
	Live Load = 100 psf (ASCE 7-98) (Design live load = 100 psf)	
10		

	Angela Mine	emoyer	Gravity Loads	Tech Report 2	12/43
	R	oof System	n RS-3: used on (deck o	i first floor roof (real)	
	DEAD . LOADS	2" bluesta *per Bl	ne power = 26 psf vestone Guide from Bros	n Supply Inc)	en ang ang ang ang ang ang ang ang ang an
		pedestal	system = 3 psf		
	an ann an tar na h-ta T	4" extruded	polystyrene insulation	= 1 psf	
		drainage ca	omposite = 2 psf		
		hot liquid	applied roofing = 2 psf		
		6" concret galvanized	e slab on 3" × 26 Op. = composite metal deck	57 psf (pg.54 of Vulcraft catalog	
	M	isc & Super im	posed:		
		same as	typical roof bay = 33	psf	100
		Total Roof	Dead Load = 124 psf		
		(Design (drad lood = 120 psf)		-
	LOADS	Live Load	a = 100 psf (Asce-	7-98)	an a
		(Design	live load = 100 psf)		
	1				
*					
	1.1.1				

	Angela Gravity Loads Tech Report 2 13/43	
	MISC. Floors: First Floor: 7" concrete slab on 3" × 20 ga. = 69 psf (pg. 54 of DEAD: LOAD: LOAD: Microff catalog)	
	* this composite deck weighs 12 psf more than the typical floor loay loading.	
	 → For areas of 7" concrete Slab on 3" × 20 ga. optivanized composite metal deck, an addition la psf should be added to the typical floor bay loading. → This will result in a total dead load = 104.5 psf (Design dead load = 80 psf) 	
	Interior floor with Bluestone:	
<u>(</u>	DEAD: 2" bluestone pover = 26 psf LOAD: > per Bluestone Guide from Braen Supply, INC)	
	pedistal system = 3 psf	
	in oddition to typical floor bay loading = 90 psf (carpet, carpet pad : odhisive are not included, in this load)	
 	Total floor clead load = 119 psf	
- 97	(design dead load = 120 psf)	
	LIVE. LOAD: In areas where bluestone flooring is present, an additional 20 psf live live should be added to the typical floor bay live load. Resuting in a total floor live load of 100 psf in those areas.	
	The odditional 20 psf is added to occount for Only repairs that may be required in the future, such as broken (cracked sections needing to be replaced.	
	(design live load = 100 psf)	

	Angela. Mincur	nayer	Gravity Load	Tech Report 2	14/43
~	Mechanic	al Koom:			
		Live load=	150 pef		
		(industry e	Handlard)		······································
	Stairs:				
		Live lood =	100 psf (ASCE7-98)	
	· · · · · ·				
\sim					8
-					
	- · · · ·				

	Angela. Mincemayer	Gravity Load	Tech Report 2	16/43
	LOAD PATH DESCR	IPTION:		
	The exterior way b" metal studs to the horizonto vertical b" meta the load into t	w facade load is can (1) 16" O.C. The load is (1) 6" metal Studs an al studs. The metal of the foundation.	ned by a grid of first transferred ad then into the studs then transfer	
*				· · · · · · · · · · · · · · · · · · ·
· · · · · ·				

Adjusted Gravity Loads from Technical Report 2 Amendment

	A. Mincemoyer Gravity Load Tech Report 2 40 Amendment	0
	EXTERIOR WALL LOADS:	
	Zinc Panels (EW-4) from page 15 of Tech Report 2 + total dead load = 13.9 psf	
	Aluminum Storefronts	
	EFCO Corporation's System 960 Wall	
	> total dead load = 12.0 psf	
	Composit Aluminum Panel (EW-3)	
	Composite aluminum wall panel = 2 psf weather barner = 1 psf 314" plywood sheathing = 2.4 psf (Asce 710) 6" metal studs @ 16" O.C. = 4 psf Spray form insulation = 1 psf 51/8" gypsum board = 2.5 psf	
	> total dead load = 12.9 psf	
0	Limestone Panel (EW-2)	
	14" limestane panel = 15 psf 34" extrudud polystyrene insulation = 0.5 psf Weathur Darrier = 1 psf 2" gypsum Sheathing = 2 psf (Asce 7-10) Stainless steel stone anchor = 2 psf 6" metal studs @ 16" O.C. = 4 psf Spray foam insulation = 1 psf 518" gypsum Doard = 2.5 psf	
	-> total dead load = 28 paf	
	Blue Stone Veneer (EW-1)	
	5" blue stone veneer = (160 pcf)(5/2) = 67 psf * Common Weatth Curb Appeal - Bluestone Guide 1" Cavity drainage mat = 2 psf 3" Extruded polystyrene insulation = 2 psf 8" concrete foundation wall = (150 pcf)(3/2) = 100 psf 12" polyisocyanurate insulation = 2 psf 12" polyisocyanurate insulation = 2 psf 5/8" gypsum board = 2.5 psf sheet water proofing = 1 psf	
	> 10701 UCUQ 10001 = 176.5 pst	
		1

Appendix C

Wind Loads from Technical Report 2

	Angela Wind Lood Tech Report 2 Mincensyer	20/43
-	Per ASCE7-98 Chapter 6: METHOD 1: BCNV5 Section 1609.6	20
	- Occarding to IBC2000 Section 1609.6, the mean roof height must not exceed the least horizontal dimension, in order to use the simplified method	
	→ least horizontal dimension = 29 ft	
	> mean roof height > 29 ft	
	=> Method 1 (simplified method) may not be used	
	METHOD 3:	
	- wind tunnel tests must be completed in order to determine design wind loads	
	=> Method 3 is not feasible for this report	
~	METHOD 2:	
	- I will use this method to calculate the wind load on the Peggy Ryan Williams Center.	S
	(assuming no irregular geometries)	
• • •		
		- 15

_

	Angela Mincemayer Wind Load Tech Report 2	aV ₄₃
	ASCE7-98: Section U.S.3 - Design Procedure	
a tana tan	<u>Sters</u> :	
	#1 Basic Wind speed, V (Per Figuri) \rightarrow V=90 mph	
	wind directionality factor, Ka	
	→ Buildings → Main Wind Force → Kd= 0.85 Resisting System (Per table 6-6) #2 Importance Factor, I	
	per Table 1-1 → Category III -" Buildings or other structures with a capacity greater than 500 for colleges or adult education facilities"	
	per Table $U=1 \rightarrow I=1.15$	
-	#2	
	Exposure Category	
	per section 10.5.6.1 > Exposure B	
	Velocity Pressure Exposure Coefficient	
	per Table 6-5:	
	mean roof height > least horizontal dimension -> Not a	
	-> must use case 2)
n name Rich namen r		
~ ·		

Angela. Mincer	mouser Wind Load	Tech Report 2	22/43
Nort	h-South Direction - Main	Reof: (Table 6-5)	
	Garden Level:	na an a	
	7=44 →	Kzg= 0.57	
	Level 1:		
	Z= 17.25A → 1	Kz. = 0.5925	
n na ser se	Level 2:		
	Z= 30.5 A > K	(z= 0.703	
	Level 3:	······································	
	2 = 43.75 ft →	Kz3= 0.779	
	Roof:	a la fa fa danga sa da	
	Z=USA > KZ	= 0.87	7
Nc	orth-South Direction- Atri	<u>um</u> : (Table 6-5)	
	Garden Level: Kz	_c = 0,57	
*	Level 1: Kz	= 0.5925	
	Level 2: Kz	2 = 0.703	
	Level 3: k	z3 = 0.779	
	Roof:		n.
	$Z = 70 A \rightarrow k_{Z_p}$	0.89	
10 m m			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
			a tata j
			· · · · ·

	Angela Mincenno	xyer	Wind Lood	b	Tech Report 2	23/43
	East	-West D	irection - Mo	ain Roof:	(Table 6-5)	
		Garden L	evel:			
			Z = 2.25 A	> KZG=	0.57	
		Level 1	:			
			Z= 15.5 A	> Kz=	0.5725	
		Level 2:				
	n n n	-	Z= 28.75 ft	→ KZ2=	0.69	
		Level 3:		*	n de la companya de La companya de la comp	n an
			z = 42 ft	→ KZ3=	0.77	
		Roof:				n Barrana Ba
		7	Z = 60 ft	$\rightarrow K_{Z_R}$	0.85	·
	Fos	+-10/05+	Direction -	Atrum:	(Toble 10-5)	
		DI - VACST	Direction			
		Garden	Level:	KZG=	0.57	
		Level 1		Kz,=	0.5725	
		rener 9:		KZ2=	0.69	· · · · · · · · · · · ·
		Level 3:		Kz3=	0.77	
		Roof:				
			2= 67 ft	→ KZ=	0.878	
	·					
· · · · ·						anda ya ka selara
						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			د (م.). 10 - 11 - 12 - 13 - 16 - 13 100-1			

	Ang	gela. Wind Load Tech Report 2 Mincemayer	24/43
-	±1#	Tamproving Factor K= (Santon (1572)	
		$\frac{1}{2} = \frac{1}{2} + \frac{1}$	
		$K_{Z_{t}} = (1 + K_{1}K_{2}K_{3})$	
		$\Rightarrow \text{Section } w.5.7.1$ H< wo ft \Rightarrow Kzt = 1.0.	7,00000
	#5	Gust Effect Factor, G	
		 ASCE 7-98 does not have a specific formula for the fundamentation frequency 1 will estimate the fundamental frequency by setting it equal to 4/2 	rtal
		-where Ta = approximate fundamental period (p	er section)
		$T_a = C_T h_n^{3/4}$ (eqn 9.5.3.3-1)	4.5, 3.p ·)
		$C_{\tau} = 0.02$ $h_{n} = 70$ ft	
\sim		$T_{a} = (.02)(70)^{3/4} = 0.484$	
		$\rightarrow n_i = \frac{1}{0.484} \rightarrow n_i = 2.07 Hz$	
e a		ni= 2.07 Hz > 1.0 Hz -> Rigid Building (per 6.2 Definitions)	-
		Section 6.5.8.1 Rigid Structures:	5 - A 1 - Sec A
		$G = 0.925 \left(\frac{(1+1.7 g_0 I_{\bar{z}} Q)}{1+1.7 g_v I_{\bar{z}}} \right) (eqn \ u-2)$	
	1	$I_{\overline{z}} = C(33/\overline{z})^{\frac{1}{6}}$ (eqn (-3)	
*	-	$Q = \frac{1}{1+0.03 \left(\frac{B+h}{L_{\Xi}}\right)^{0.03}} (eqn \ 0.4)$	
		$L_{\overline{z}} = l(\overline{z}/33)^{\overline{z}}$ (eqn 6-5)	

	Angela Mincemayer	Wind Lood	Tech Report 2	25/43
	North-South	Direction - Main Roc √ē	<u>f:</u>	
	2 = 0.6h = 0.6(65	> Zmin)= 39 > 30√ → Z=	39	
	L= 320 (E= 3	Table 6-4		
	→ L _E = 32	$20\left(\frac{39}{33}\right)^{3} \rightarrow L_{\overline{2}}$	= 338,32	
	$Q = \sqrt{\frac{1+0.0}{1+0.0}}$	$B = \frac{B}{B^2}$	245 fi U5 fi	
	=	$\begin{array}{c}1\\93\left(\frac{345+05}{338,32}\right)^{0.03}\rightarrow\end{array}$	Q= 0.791	
<u>,</u>	IZ = C(3) = (0.30)	$(33/2)^{\frac{1}{6}}$ $(33/30)^{\frac{1}{6}}$ $(33/30)^{\frac{1}{6}}$ $(33/30)^{\frac{1}{6}}$	50 (Table 6-4)	
	→ <u>T</u> z = (. 292		
	G= 0.925 ((1+1.700IEQ) 1+1.79vIE	$Q_a = 3.4$ (Section $Q_v = 3.4$) (6.5.8.1	
	= 0.925($\frac{(1+1.7(3.4)(0.292)(0.791))}{1+1.7(3.4)(0.292)}$		anti- anti-anti-anti- anti-anti-anti-anti- anti-anti-anti-anti-anti-anti- anti-anti-anti-anti-anti-anti-anti- anti-anti-anti-anti-anti-anti-anti- anti-anti-anti-anti-anti-anti-anti-anti-
	$a \rightarrow G=$	0.804		

 Angela. Mincemoyur	Wind Load	Tech Report 2	24/43
North-South Direction $L = L(\frac{2}{33})$	ection- Atrium: D ^e		
= 0.64 > = 0.6(70	2min $) = 42 > 30 / \Rightarrow =$	2=42	
L= 320 (- E= 3	Table 6-4		
$\Rightarrow L\overline{z} = 320$ $Q = \int \frac{1}{1+0.63}$	$\frac{(42/33)^{3}}{(\frac{8+h}{L^{2}})^{0.63}} \rightarrow L^{\frac{3}{2}}$	346.79	
=	$\left(\frac{245+70}{346.79}\right)^{0.63} \rightarrow \mathbb{Q}$	= 0.792	
IZ = C (33/Z = (0.30)(33	$(1)^{1/2} = 0.30 (T_{0})^{1/2} = 12$	able 10-4)	
$\Rightarrow Lz = 0.22$ G = 0.925 ((1+1.7goIZQ)) (+1.7gvIZZ))	$Q_a = 3.4$ (section $Q_v = 3.4$) u.5.8.1	
= 0.925	(<u>1+1.7(3.4)(.288)(.79</u>) (1+1.7(3.4)(.288)	<u>a))</u>)	
, → G=	0,805		

Angela Mincemoyer Wir	nd Lood	Tech Report 2	27/43
 East-West Direction LZ = $l(Z/33)^{E}$	- Main Roof:		i i i
$Z = 0.6h > Z_{min}$ = 0.6(60) = 31	0>30√ → 3	2 = 36	
$l=3a0$ (Table $\overline{z}=\frac{1}{3}$)	6-4		
$\Rightarrow L = 320 (30/3)$ $Q = \begin{bmatrix} 1 \\ 1 + 0.163 (B+b) \end{bmatrix}$	5) ³ → LZ	= 329.42	
$= \frac{1}{1+0.03(\frac{110+00}{12})}$	2\0.63	0.000	
V (329.1	$ a \rightarrow Q$	= 0.841	
 Iz = C(33/ミ)で = (0.30)(33/36)で	C=0.30 Z=36	(Table 6-4)	
→ IZ= 0.296			
$G = 0.925 \left(\frac{(1+1.70)}{1+1.70} \right)$	GIEQ) GVIE	$g_{v} = 3.4$ (section $g_{v} = 3.4$) (5.8.1	
$= 0.925 \left(\frac{(1+1.7)}{1+1.7} \right)$	3.47(.296)(.841)) 3.47(.296)		
→ G= 0.832			
			n selen Tradicionalista

	Angela Mincemoyer Wind Load	Tech Report 2	28/43
	East - West Direction - Atrium:	· · · · · · · · · · · · · · · · · · ·	
	$L\overline{z} = l(\overline{z}/33)^{\overline{z}}$		
	Z = 0.6h > Zmin = 0.6 (67) = 40.2 > 30√	→ Z = 40.2	
	$l = 320$ { Table 6-4 $\overline{E} = \frac{1}{3}$ }		
	→ LZ = 320 (40.2/33) 3 → LZ	= 341.76	
	$Q = \int_{1+0.63}^{1+0.63} \left(\frac{B+h}{L\Xi}\right)^{0.63}$		
	$= \int \frac{1}{1+0.63\left(\frac{110+67}{341.76}\right)^{0.63}} \rightarrow$	Q= 0.840	
.	$I_{\Xi} = C(33/\Xi)^{\frac{1}{6}} \qquad C = 0.30 (7)^{\frac{1}{6}} = (0.30)(33/40.2)^{\frac{1}{6}} \qquad \Xi = 40.2$	Table (0-47)	
 	→ I== 0.290		· · · · · · · · · · · · · · · · · · ·
	$G = 0.925 \left(\frac{(1+1.7g_0 I_{\overline{2}}Q)}{1+1.7g_v I_{\overline{2}}} \right)$	$Q_0 = 3.4 \ \text{Section}$ $Q_v = 3.4 \ \text{S.5.8.1}$	
·	$= 0.925 \left(\frac{(1+1.7(3.4)(.290)(.840))}{(1+1.7(3.4)(.290))} \right)$		· · · · · · ·
	→ G= 0.832		
· · · · ·			· · · · ·
, Â			
· · · · ·			-
		· · · · · ·	

	Angela Mincimayer	.Tech Report 2	29/43
	# 6 Enclosure Classification		
	→ enclosed per Section	6.5.9	
	#7 Internal pressure coefficient GCpi	na se en	······································
	GCpi = +0.18 per section -0.18 Table	20_6.5.11.1 6-7	· · · ·
	#8 External pressure coefficient, Cp per Fig.6-3: North-South	per Section (0.5.11.2.1	
	$\frac{L}{B} = \frac{110}{245} = 0.45 \rightarrow Wir109$	ndward Wall Cp=0.8 (use with 0 CWard Wall Cp=-0.5 (use with 1	z) DN
	East West:		× •• •• ••
	$\frac{L}{B} = \frac{245}{110} = 2.2 \Rightarrow Wind$	lward Wall Cp= 0.8 (use with gz) word wall Cp= -0.29 (use with gin 2 found using linear interpole). tim
	#9 Velocity Pressure, 92,94 per s	section 6.5.10	
	92= 0.00256 KzKz+KdV2 I (10/ft	2)	-
	North-South Direction - Main Roof:		-
	Garden Level:		
8 . 	$q_{z_{\overline{c}}} = 0.0025 \cup (0.57)(1.0)(0.85)(90^2)$	$(1.15) \Rightarrow Q_{z_G} = 11.55 p$	3 7
	Level 1:		
	9z,= 0.00256(0.5925)(1.0)(0.85)(9	0^2)(1.15) $\rightarrow Q_{z_i} = 13.01 \text{ psf}$	
	Level 2:		
	922 = 0.00256 (0.703)(1.0)(0.85)(90	$(1.15) \rightarrow Q_{Z_2} + 14.25 p$	65

	Argela Mincemayer Wind	Lood	Tech Report 2	30/43
	Lavel 3:			
	9z3 = 0.00256 (0.770	1)(1.0)(0.85)($(90^2)(1.15) \rightarrow Q_{z_3} = 15.79 \text{ p}$	F
	Roof:		and a start and a start star	
	$Q_{Z_R} = 0.00256(0.87)$	(1.0)(0.85)(9($(1.15) \rightarrow Q_{2a} = 17.03 \text{ per}$	$f = q_n$
en le	North-South Direction - Atri	um:		
	Garden Level:		an an an anna haon anna an anna. An a' an an an anna an anna	
	926= 11.55 psf			
n n n harde	Level 1:			
	92,= 12.01 psf			
	Level 2:			
	$Q_{Z_2} = 14.25 \text{ psf}$			
	Level 3:			
	9=23 = 15.79 psf			
	R_{cof} : $q_{z_R} = 0.00256(0)$	89)(1.0)(0.85))(902)(1.15) → QZR= 18.04	psf=qn
	East-West Direction - N	lain Roof:		
	Garden Level:			
	9=6= 0.00256 (0.57)	(1.0)(0.85)(9	02) (1.15) → Qz = 11.55	f
1	Level 1:			
×	QZ,= 0.00256 (0.572	5)(1.0)(0.85)((902)(1.15) → QZ = 11.60	def
	Level 2:			
	9=2= 0.00256 (0.09)	(1.0)(0.85)(0	$(1.15) \Rightarrow Q_{z_2} = 13.99$	psf
	Level 3:			n den Gesterniste
	923= 0.00256 (0.77)(1.0)(0.85)(90²)(1.15)→q _{z3} = 15.61	psf
				1

Wind Load Tech Report 2 31/43 Angela Mincemover Roof: QZR= 0.00256(0.85)(1.0)(0.85)(902)(1.15) → QZR= 17.23 psf=Qh East - West Direction - Atrium: Garden Level: 926 = 11.55 psf Level 1: 9=,= 11.60 psf Level 2: $q_{z_2} = 13.99 \text{ psf}$ Level 3: 923= 15.61 psf Roof . $Q_{Z_R} = 0.00256 (.878)(1.0)(0.85)(90^2)(1.15) \rightarrow Q_{Z_R} = 17.80 \text{ psf}$ #10 - Design Wind Load, P. per section 10.5.12.2.1 see excel pages that follow

Design Wind Load, P - per section 6.5.12.2.1

 $p = qGC_p (psf)$

North-South Direction - Main Roof:

		q	*	G	*	Cp	=	p (psf)	*	Area (sf)	=	Force (k)
ARD	Garden Level	11.55	*	0.804	*	0.8	=	7.43	*	1942	=	14.4
	Level 1	12.01	*	0.804	*	0.8	=	7.72	*	2986	Η	23.1
Ň	Level 2	14.25	*	0.804	*	0.8	=	9.17	*	2986	Η	27.4
N N	Level 3	15.79	*	0.804	*	0.8	=	10.16	*	3734	=	37.9
5	Roof	17.63	*	0.804	*	0.8	=	11.34	*	2240	=	25.4
_	Garden Level	17.63	*	0.804	*	-0.5	=	-7.09	*	1942	=	-13.8
ARD	Level 1	17.63	*	0.804	*	-0.5	=	-7.09	*	2986	=	-21.2
M.	Level 2	17.63	*	0.804	*	-0.5	=	-7.09	*	2986	=	-21.2
	Level 3	17.63	*	0.804	*	-0.5	=	-7.09	*	3734	=	-26.5
	Roof	17.63	*	0.804	*	-0.5	=	-7.09	*	2240	=	-15.9

Wind Load Base Shear

	Force (k)					
Garden Level	28.2					
Level 1	44.2					
Level 2	48.5					
Level 3	64.4					
Roof	41.3					
Total	226.6					

North-South D	irection -	Atri	um:								
	q	*	G	*	Cp	=	p (psf)	*	Area (sf)	=	Force (k)
Garden Level	11.55	*	0.805	*	0.8	=	7.44	*	182	=	1.4
Level 1	12.01	*	0.805	*	0.8	=	7.73	*	280	=	2.2
Level 2	14.25	*	0.805	*	0.8	=	9.18	*	280	=	2.6
Level 3	15.79	*	0.805	*	0.8	=	10.17	*	455	=	4.6
Roof	18.04	*	0.805	*	0.8	=	11.62	*	315	=	3.7
Garden Level	18.04	*	0.805	*	-0.5	=	-7.26	*	182	=	-1.3
Level 1	18.04	*	0.805	*	-0.5	=	-7.26	*	280	=	-2.0
Level 2	18.04	*	0.805	*	-0.5	=	-7.26	*	280	=	-2.0
Level 3	18.04	*	0.805	*	-0.5	=	-7.26	*	455	=	-3.3
Roof	18.04	*	0.805	*	-0.5	=	-7.26	*	315	=	-2.3
Roof Wind Load Ba	18.04	*	0.805	*	-0.5	=	-7.26	*	315	=	-2.3
	Force (k)										
	Force (k)	-									

	Force (k)
Garden Level	2.7
Level 1	4.2
Level 2	4.6
Level 3	7.9
Roof	5.9
Total	25.4

Peggy Ryan Williams Center Page 68

	q	*	G	*	Cp	=	p (psf)	*	Area (sf)	=	Force (k)
Garden Level	11.55	*	0.832	*	0.8	=	7.69	*	667	=	5.1
Level 1	11.6	*	0.832	*	0.8	=	7.72	*	1333	=	10.3
Level 2	13.99	*	0.832	*	0.8	=	9.31	*	1333	=	12.4
Level 3	15.61	*	0.832	*	0.8	=	10.39	*	1697	=	17.6
Roof	17.23	*	0.832	*	0.8	=	11.47	*	1030	=	11.8
Garden Level	17.23	*	0.832	*	-0.29	=	-4.16	*	667	=	-2.8
Level 1	17.23	*	0.832	*	-0.29	=	-4.16	*	1333	=	-5.5
Level 2	17.23	*	0.832	*	-0.29	=	-4.16	*	1333	=	-5.5
Level 3	17.23	*	0.832	*	-0.29	=	-4.16	*	1697	=	-7.1
Roof	17.23	*	0.832	*	-0.29	=	-4.16	*	1030	=	-4.3
Wind Load Ba	se Shear										
	Force (k)	-									
Garden Level	7.9	-									
level 1	15.8										

Level 1	15.8					
Level 2	18.0					
Level 3	24.7					
Roof	16.1					
Total	82.5					

Peggy Ryan Williams Center Page 69

East-West Direction - Atrium:

Ľ	
<	
5	
2	
z	
-	
<	

LEEWARD

	q	*	G	*	Cp	=	p (psf)	*	Area (sf)	=	Force (k)
Garden Level	11.55	*	0.832	*	0.8	=	7.69	*	67	=	0.5
Level 1	11.6	*	0.832	*	0.8	=	7.72	*	133	=	1.0
Level 2	13.99	*	0.832	*	0.8	=	9.31	*	133	=	1.2
Level 3	15.61	*	0.832	*	0.8	=	10.39	*	217	=	2.3
Roof	17.8	*	0.832	*	0.8	=	11.85	*	150	=	1.8
Garden Level	17.8	*	0.832	*	-0.29	=	-4.29	*	67	=	-0.3
Level 1	17.8	*	0.832	*	-0.29	=	-4.29	*	133	=	-0.6
Level 2	17.8	*	0.832	*	-0.29	=	-4.29	*	133	=	-0.6
Level 3	17.8	*	0.832	*	-0.29	=	-4.29	*	217	=	-0.9
Roof	17.8	*	0.832	*	-0.29	=	-4.29	*	150	=	-0.6

Wind Load Base Shear

	_Force (k)
Garden Level	0.8
Level 1	1.6
Level 2	1.8
Level 3	3.2
Roof	2.4
Total	9.8

Roof Uplifts: - per Figure 6-3

$p = qGC_p (psf)$

North-South	Direction -	Mai	n Roof:	1	h = 65	h/L = 65/110 = 0.591			
	q	*	G	*	C_{p}	=	p (psf)		
0 to h/2	17.63	*	0.804	*	-0.925	Ξ	-1 3. 1 1		
h/2 to h	17.63	*	0.804	*	-0.864	=	-12.25		
h to 2h	17.63	*	0.804	* -0.535		=	-7.60		

North-Sout	h Direction	- At	rium:		h = 70	h/L = 70/ 1 10 = 0.630		
	q	*	G	*	Cp	=	p (psf)	
0 to h/2	18.04	*	0.805	*	-0.988	=	-14.35	_
h/2 to h	18.04	*	0.805	*	-0.846	=	-12.29	

East-West D	irection - I	Main	Roof:	h	n = 60	h/L = 60/245 = .245			
	q	q * G * C _p		=	p (psf)				
0 to h/2	17.23	*	0.832	*	-0.9	=	-12.90		
h/2 to h	17.23	*	0.832	*	-0.9	=	-12.90		
h to 2h	17.23	*	0.832	*	-0.5	=	-7.17		
>2h	17.23	*	0.832	*	-0.3	=	-4.30		

East-West Direction - Atrium:				h = 67		h/L = 67/245 = .273		
	q	*	G	*	Cp	=	p (psf)	
h/ 2 to h	17.8	*	0.832	*	-0.9	=	-13.33	
h to 2h	17.8	*	0.832	*	-0.5	=	-7.40	

PAGE 36

Angela Mincemoyer | Structural

Adjusted Wind Loads from Technical Report 2 Amendment

	A. Mincemayer Wind Loads	Tech Report 2 Amendment
	Atrium:	
	Per ASCE 7-98 Section 6.3	
	Ac= total area of openings receives positive externa	in a wall that
	- openings are defined as a in the building envelope aur to flow through the r	which allow which allow which allow
	-The only opening in my bu attrium roof. Therefore, Ao PRWC.	alding is the
	+ thus classifying the b	building as enclosed
	- In order to account for the a I will calculate the wind press attrium wall above the roo external pressure and interni (using the GCpi calculated on p	throum opening, ure on the f using al suction. oge 29)
	$p = qGC_p - q_i(GC_{pi})$	
d d t		

North-South Din	ection - Al	triun	ë													
	đ	*	g	×	C _P) - (qi	*	GC_{p_i}	(н	p (psf)	¥	Area (sf)	н	Force (k)
Garden Level	11.55	*	0.805	*	0.8) - (,	*		~	Ш	7.44	*	182	п	1.4
Level 1	12.01	*	0.805	*	0.8) - (·	*	,	~	Ш	7.73	*	280	Ш	2.2
Level 2	14.25	*	0.805	*	0.8) - (ı	*	ı	(Ш	9.18	*	280	Ш	2.6
Level 3	15.79	*	0.805	*	0.8) - (,	*		-	н	10.17	*	455	н	4.6
Roof	18.04	*	0.805	*	0.8) - (18.04	*	-0.18	-	H	14.86	*	315	н	4.7
Garden Level	18.04	*	0.805	*	-0.5) - (1	*	ı	(Ш	-7.26	×	182	Ш	-1.3
Level 1	18.04	*	0.805	*	-0.5) - (-	*		(H	-7.26	*	280	н	-2.0
Level 2	18.04	*	0.805	*	-0.5) - (*		("	-7.26	*	280	u	-2.0
Level 3	18.04	*	0.805	*	-0.5) - (*		(11	-7.26	*	455	н	-3.3
Roof	18.04	*	0.805	*	-0.5) - (18.04	*	0.18	(=	-10.51	*	315	Ш	-3.3
Mina Loda Bas	e snear															
	Force (k)	I														
Garden Level	2.7	I														
Level 1	4.2															
Level 2	4.6															
Level 3	7.9															
Roof	8.0															
Total	27.4	I														

геемчво

аяамаиім

Peggy Ryan Williams Center Page77

East-West Directic	on - Atrii	ä														
	b	*	ს	*	ئ) - (ū	*	GC_{p_i}	(Ш	p (psf)	*	Area (sf)	н	Force (k)
Garden Level	11.55	*	0.832	¥	0.8) - (ı.	*	I	-	II	7.69	*	67	н	0.5
Level 1	11.6	*	0.832	×	0.8) - (*	ī	-	н	7.72	*	133	"	1.0
Level 2	13.99	*	0.832	*	0.8) - (*		-	н	9.31	*	133	н	1.2
Level 3	15.61	*	0.832	×	0.8) - (*	,	_	н	10.39	*	217	н	2.3
Roof	17.8	*	0.832	¥	0.8) - (17.8	*	-0.18	_	п	15.05	*	150	н	2.3
Garden Level	17.8	*	0.832	*	-0.29) - (1	*	ı	-	II	-4.29	*	67	н	-0.3
Level 1	17.8	*	0.832	*	-0.29) - (•	*	ſ	<u> </u>	н	-4.29	*	133	н	-0.6
Level 2	17.8	*	0.832	*	-0.29) - (*	,	_	н	-4.29	*	133	н	-0.6
Level 3	17.8	*	0.832	¥	-0.29) - (*	,	~	П	-4.29	*	217	н	-0.9
Roof	17.8	*	0.832	*	-0.29) - (17.8	*	0.18	(П	-7.50	*	150	н	-1.1
Wind Load Base	Shear															
-	Enria (k)															

аяамаиім

LEEWARD

Force (k)	0.8	1.6	1.8	3.2	3.4	10.8
	Garden Level	Level 1	Level 2	Level 3	Roof	Total

Peggy Ryan Williams Center Page 80

Appendix D

Seismic Loads from Technical Report 2

	Angela Seismic Load Tech Report 2 41/43.
~	#1 Exempt?
	Occupancy Category: III > per Table 9.1.3
	Site Class : B
	$S_{s} = 18.7.7_{o} \rightarrow 0.187_{o}$ $P_{per} = Figure 9.4.1.1 (a)$ $S_{1} = 0.3.7_{o} \rightarrow 0.003_{o} \rightarrow 0.04_{o} \rightarrow not exempt$ $P_{per} = Figure 9.4.1.1 (b)$
	#2 Occupancy Importance Factor $I_{=}^{=}$ 1.25 \rightarrow per Table 9.1.4
dan series se	#3 Adjust for site class: → per section 9,4.1.2.4
	SMS= Fa3s Fa= 1.0 (Table 9.4.1.2.4a)
	5ms = (1.0)(0.187) > 5ms = 0.187
<u> </u>	SMI = FUSI FV= 1.0 (Table 9.4.1.2.46)
	5m1 = (1.0)(0.003) → 5m1 = 0.003
	#4 Spectral Response Acceleration Parameters: (section 9.4.1.2.5)
	$S_{DS} = \frac{2}{3} S_{MS}$
	505 = 3/3 (0.187) → 505 = 0.125
	501 = 2/3 SMI
	SDI= 2/3 (0.063) → SDI= 0.042
	#5 Seismic Design Category (Table 9.4.2.1a)
***	Seismic Design Category A
_	
in white a	

	Angela. Mincemayer	Seismic Load	Te	ich Report 2	42/43
	#U Select Proced	ure:			
-	Due to the clesign cata	PRWC Classifyi gory A, per	ng as section	Seismic 9.5.2.5.1	
	the building lateral fo applied in orthogono)"Shall be onal rous given bu dependently, ul directions"	lyzed for l egn. In each	minimum 9.5.2.5.1, of two	
ter and the second second	egn 9.5.2	2.5.1 Fx = 1	0.01 Wx	ده در از در از ده میروند از از ا	
, ¹	pertable 9.5	.2.2			, a a
n n den ge n I n e de nord	Structural Detailed	Steel Systems N For Seismic P	ot Spect	Fically	n National States of States
		2=3		ngana sé Angang Agandaran kan Kabupatén Kabupatén K	· · · · · · · ·
lan er er er er er er	† 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Area (SF)	W (psf) Wx (K)	·
C	Level 1 typ. Floor Green Roof Deck	14,682 3,157 3,942	92.5 171 124	1,358 540 489	
· · ·	Level 2 typ. Floor	15,257	92.5	1,412	
1	Level 3 typ. Floor Green Roof	12,785 2,899	92.5 171	1,183 496	
a yan ya	Roof typ Roof	15,930	48.2	769	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Atrium typ Roof	204	48.2	10	
		·			
· · · · · · · · · · · · · · · · · · ·	* W - per section - 1 will use the floor bay load and deck	9.5.3.2 15 th previously calculating, typical r area loadings	e dead ulated to cof bau s.	load only Ipical), green roof,	

	Angela Mincinnoyer	Seismic Load	Tech Report 2	43/43
	W1= 1358 + 1 W2= 1412 W3= 1183 WR= 769	$540 + 489 \rightarrow W_1 = 238$ k $3 + 490 \rightarrow W_3 = 1079^{k}$ $1^{k} \qquad W_{Ratrum} = 10^{k}$	1 F.	
	North-South	and East-West Self	amic Forces:	
		90°-0"		
		(3'-4"	1679K	
		13'-4" 18'-4"	<	
		Base Shear = 6257*		
			انها ^{ال} الدان الالا المالية المالية المالية المالية المالية الم	
т. т				

Adjusted Seismic Loads from Technical Report 2 Amendment

	A. Minclinoyer	Seismic Loo	od	Tech Report 2 Amendment	4415
	* continuation *	f toble on r	2000 42 8		
1	· COMMINICATION	or more arre	- Fx = 0.0	NWX	
			1		
		MX(K)	FX (K)		
	Level 1				
	typ Floor	1358	13.58		
	Green Roof	540	5.4		
	VECK	404	4.89		
	Level 2				
	typ floor	1412	14.12		
	LEVEL 3				
	typ floor	1183	11.83		
	Green Roof	496	4.90		
	Rone				
	THO ROOF	769	7.69		
	Atrium	10	010		
H	TYP rooi	, U	0.10		
				071	
	W1= 13.58 +	5.4+4.84	> WIE 23	0.84*	
	W2 = 14.12	K			
	11 - 1100		. 11 704		
	W3 - 11.83	+4.96 > W3	= 10.44-		
	WR= 7.69	K			
		24			
	WAtrium = 0.1	10-			

Α.	Mincemouer [Seismic Load	Tech Report 2 Amendment	446
	North-South	and East-West S	CEISMIC Forces:	
		10-0" 0.10k		
		90,-04	7.64	
		13'-4"	K 16.79 M	
		13'-4"	(4.12×	
		13'-4"	23.87*	
	Boe	the Shear = 62.59^{k}		

Peggy Ryan Williams Center Page 85

Seismic Forces Due to Exterior Walls

	Elevation	Zinc Panel Area (SF)	Aluminum Storefront	Aluminum Panel	Limestone Panel	Bluestone Veneer	Wx (kin)	Fx (kip)
Level 1				Area (Sr)	Alca (Si)	Alca (SI)	(KIP)	(Kip)
LEVELL	North	650.0	1766.0	674.8	0.0	32.5	44.7	0 447
	Fast	485.5	124.9	303.4	203.3	252.9	62.5	0.625
	South	538.7	634.2	307.2	454.3	85.0	46.8	0.468
	West	260.8	482.3	0.0	207.8	134.8	39.0	0.390
	West	200.0	402.0	0.0	207.0	134.0	35.0	0.350
							144 - T	10
							w ₁ -	1.9
Lough 2								
Level 2	North	650.0	1560.0	271.0	400.9	0.0	AC 4	0.5
	North	650.0	1569.2	3/1.9	490.8	0.0	46.4	0.5
	East	0.0	485.3	110.5	/11.0	0.0	27.2	0.3
	South	502.1	19/8.3	392.4	190.8	0.0	41.1	0.4
	West	271.0	482.3	0.0	342.6	0.0	19.1	0.2
							w ₂ =	1.3
Level 3								
	North	791.9	1147.6	849.6	939.4	0.0	62.0	0.6
	East	0.0	658.4	0.0	924.2	0.0	33.8	0.3
	South	559.4	2503.5	144.9	489.1	0.0	53.4	0.5
	West	348.9	807.4	0.0	197.6	0.0	20.1	0.2
							w ₃ =	1.7
Roof								
	North	1742.6	0.0	0.0	467.8	0.0	37.3	0.4
	East	597.1	0.0	0.0	177.2	0.0	13.3	0.1
	South	1749.8	159.4	0.0	21.9	0.0	26.8	0.3
	West	713.2	0.0	0.0	50.3	0.0	11.3	0.1
							w _{roof} =	0.9
Atruim								
	North	0.0	0.0	0.0	105.5	0.0	3.0	0.0
	East	0.0	0.0	0.0	42.0	0.0	1.2	0.0
	South	0.0	60.0	0.0	49.3	0.0	2.1	0.0
	West	0.0	0.0	0.0	50.3	0.0	1.4	0.0
							w _{atrium} =	0.1

A. Mincencyer	Seismic Lood	Tech Report 2 Amendment
Seismic Forces	Due to Exterior Wo	
	10'0 C.1 K	
	30'-0''	0.9*
	13'-4"	1.77 K
	13'-4"	1.3 ^k
	13'-4"	1.9 K
Total Seismic For	Base Shear = 5.9	,k
	10'-0" O.2K	₹ 8.59 ₩
	20'-0"	
	13'-4"	18.49 *
	13'-4"	15.42*
	13'-4"	25.77 *
e	base Shear = 68.47×	